A165194 Triangle of 2^n terms by rows, left half of (n+1)-th row = row n; right half = "reverse and increment" row n; using terms in A000110.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 5, 2, 1, 1, 1, 2, 1, 2, 5, 2, 1, 1, 2, 5, 15, 5, 2, 5, 2, 1
Offset: 1
Examples
First few rows of the triangle = 1; 1, 1; 1, 1, 2, 1; 1, 1, 2, 1, 2, 5, 2, 1; 1, 1, 2, 1, 2, 5, 2, 1, 2, 5, 15, 5, 2, 5, 2, 1; ... For example: row 4, left half = (1, 1, 2, 1); right half = (1, 2, 1, 1) replaced with the next higher Bell numbers: (2, 5, 2, 1). Appending the two \kQ halves, we obtain row 4: (1, 1, 2, 1, 2, 5, 2, 1), sum = 15 = A000110(4).
Formula
Given the Bell sequence, A000110: (1, 1, 2, 5, 15,...); row 1 = 1, row 2 =
(1, 1);...where left half of row (n+1) = row n. Right half of row (n+1)
= reversal of row n, replacing terms with the next Bell number.
Comments