Original entry on oeis.org
1, 2, 4, 5, 7, 12, 14, 15, 17, 22, 37, 42, 44, 49, 51, 52, 54, 59, 74, 79, 94, 146, 161, 166, 165, 173, 188, 193, 195, 200, 202, 203
Offset: 1
a(8) = 15 = sum of the first 8 terms of A165195: (1, 1, 2, 1, 2, 5, 2, 1...).
A165194
Triangle of 2^n terms by rows, left half of (n+1)-th row = row n; right half = "reverse and increment" row n; using terms in A000110.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 5, 2, 1, 1, 1, 2, 1, 2, 5, 2, 1, 1, 2, 5, 15, 5, 2, 5, 2, 1
Offset: 1
First few rows of the triangle =
1;
1, 1;
1, 1, 2, 1;
1, 1, 2, 1, 2, 5, 2, 1;
1, 1, 2, 1, 2, 5, 2, 1, 2, 5, 15, 5, 2, 5, 2, 1;
...
For example: row 4, left half = (1, 1, 2, 1); right half = (1, 2, 1, 1)
replaced with the next higher Bell numbers: (2, 5, 2, 1). Appending the two \kQ halves, we obtain row 4: (1, 1, 2, 1, 2, 5, 2, 1), sum = 15 = A000110(4).
Showing 1-2 of 2 results.
Comments