This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165200 #41 Jun 15 2022 04:09:28 %S A165200 1,1,1,3,6,18,58,251,1410,10311,98577,1246488,20837439,466087635 %N A165200 Number of isomorphism classes of abelian / medial quandles. %C A165200 A quandle is abelian / medial (both names are being used) if it satisfies the identity (XY)(UV) = (XU)(YV). Not to be confused with a commutative quandle (A179010). %H A165200 P. Jedlička, A. Pilitowska, D. Stanovský, A. Zamojska-Dzienio, <a href="http://arxiv.org/abs/1409.8396">The structure of medial quandles</a>, arXiv preprint 1409.8396 [math.GR], 2014. %H A165200 David Joyce, <a href="http://dx.doi.org/10.1016/0022-4049(82)90077-9">A classifying invariant of knots, the knot quandle</a>, J. Pure Appl. Algebra 23 (1982) 37-65. %H A165200 Sam Nelson, <a href="http://www1.cmc.edu/pages/faculty/VNelson/quandles.html">Quandles and Racks</a> %H A165200 David Stanovský, <a href="http://www.karlin.mff.cuni.cz/~stanovsk/quandles/">Calculating with quandles</a>, GAP code to calculate the numbers. %H A165200 Wikipedia, <a href="https://en.wikipedia.org/wiki/Quandles">Quandles</a> %H A165200 Wikipedia, <a href="https://en.wikipedia.org/wiki/Medial_magma">Medial magma</a> %Y A165200 Cf. A179010 (commutative quandles), A242044, A242275. %K A165200 nonn,hard,more %O A165200 0,4 %A A165200 _James McCarron_, Jan 12 2011 %E A165200 More terms from _David Stanovsky_, Sep 30 2014 %E A165200 Description edited by _W. Edwin Clark_, May 30 2013, and _David Stanovsky_, Sep 30 2014