This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165218 #14 Mar 13 2018 11:50:32 %S A165218 13,293,10613,18773,76733,97973,458333,552053,1247693,2647133,4012013, %T A165218 4592453,11607653,13520333,20097293,25877573,34845413,51509333, %U A165218 53772893,65399573,65496653,66373613,72880373,73496333,86359853,89737733 %N A165218 Primes q of the form q=p^2+4 (p=prime) such that r=q^2+4 is also prime. %C A165218 Intersection of A062324 and A045637. Except of the first term, 13, all terms == 5 (mod 6) == 5 (mod 12) == 5 (mod 24) == 23 (mod 30)== 53 (mod 120). Values of primes p in A116886. %H A165218 Zak Seidov, <a href="/A165218/b165218.txt">Table of n, a(n) for n = 1..10000</a> %F A165218 a(n) = (A116886(n))^2 + 4. %e A165218 Prime q=13=p^2+4 (p=3) and r=q^2+4=13^2+4=173 (prime). %e A165218 Prime q=293=p^2+4 (p=17) and r=q^2+4=293^2+4=85853 (prime). %t A165218 Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[PrimeQ[q = p^2+4] && PrimeQ[q^2+4], Print[q]; Sow[q]]]][[2, 1]] (* _Jean-François Alcover_, Nov 07 2013 *) %t A165218 Select[Prime[Range[2000]]^2+4,AllTrue[{#,#^2+4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 13 2018 *) %Y A165218 Cf. A045637, A062324, A116886. %K A165218 nonn %O A165218 1,1 %A A165218 _Zak Seidov_, Sep 08 2009