cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165278 Table read by antidiagonals: T(n, k) is the k-th number with n-1 even-indexed Fibonacci numbers in its Zeckendorf representation.

Original entry on oeis.org

2, 5, 1, 7, 3, 4, 13, 6, 9, 12, 15, 8, 11, 25, 33, 18, 10, 17, 30, 67, 88, 20, 14, 22, 32, 80, 177, 232, 34, 16, 24, 46, 85, 211, 465, 609, 36, 19, 27, 59, 87, 224, 554, 1219, 1596, 39, 21, 29, 64, 122, 229, 588, 1452, 3193, 4180, 41, 23, 31, 66, 156, 231, 601
Offset: 1

Views

Author

Clark Kimberling, Sep 13 2009

Keywords

Comments

For n>=0, row n is the monotonic sequence of positive integers m such that the number of even-indexed Fibonacci numbers in the Zeckendorf representation of m is n.
We begin the indexing at 2; that is, 1=F(2), 2=F(3), 3=F(4), 5=F(5),...
Every positive integer occurs exactly once in the array, so that as a sequence it is a permutation of the positive integers.
For counts of odd-indexed Fibonacci numbers, see A165279.
Essentially, (row 0)=A062879, (column 1)=A027941, (column 2)=A069403.

Examples

			Northwest corner:
2....5....7...13...15...18...20...34...36...
1....3....6....8...10...14...16...19...20...
4....9...11...17...22...24...27...29...31...
12..25...30...32...46...59...64...66...72...
Examples:
20=13+5+2=F(7)+F(5)+F(3), zero evens, so 20 is in row 0.
19=13+5+1=F(7)+F(5)+F(2), one even, so 19 is in row 1.
22=21+1=F(8)+F(2), two evens, so 22 is in row 2.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{i = Ceiling[Log[GoldenRatio, Sqrt[5]*n]], v = {}, m = n}, While[i > 1, If[Fibonacci[i] <= m, AppendTo[v, 1]; m -= Fibonacci[i], If[v != {}, AppendTo[v, 0]]]; i--]; Total[Reverse[v][[1 ;; -1 ;; 2]]]]; T = GatherBy[SortBy[ Range[10^4], f], f]; Table[Table[T[[n - k + 1, k]], {k, n, 1, -1}], {n, 1, Length[T]}] // Flatten (* Amiram Eldar, Feb 04 2020 *)

Extensions

More terms from Amiram Eldar, Feb 04 2020