A165278 Table read by antidiagonals: T(n, k) is the k-th number with n-1 even-indexed Fibonacci numbers in its Zeckendorf representation.
2, 5, 1, 7, 3, 4, 13, 6, 9, 12, 15, 8, 11, 25, 33, 18, 10, 17, 30, 67, 88, 20, 14, 22, 32, 80, 177, 232, 34, 16, 24, 46, 85, 211, 465, 609, 36, 19, 27, 59, 87, 224, 554, 1219, 1596, 39, 21, 29, 64, 122, 229, 588, 1452, 3193, 4180, 41, 23, 31, 66, 156, 231, 601
Offset: 1
Examples
Northwest corner: 2....5....7...13...15...18...20...34...36... 1....3....6....8...10...14...16...19...20... 4....9...11...17...22...24...27...29...31... 12..25...30...32...46...59...64...66...72... Examples: 20=13+5+2=F(7)+F(5)+F(3), zero evens, so 20 is in row 0. 19=13+5+1=F(7)+F(5)+F(2), one even, so 19 is in row 1. 22=21+1=F(8)+F(2), two evens, so 22 is in row 2.
Programs
-
Mathematica
f[n_] := Module[{i = Ceiling[Log[GoldenRatio, Sqrt[5]*n]], v = {}, m = n}, While[i > 1, If[Fibonacci[i] <= m, AppendTo[v, 1]; m -= Fibonacci[i], If[v != {}, AppendTo[v, 0]]]; i--]; Total[Reverse[v][[1 ;; -1 ;; 2]]]]; T = GatherBy[SortBy[ Range[10^4], f], f]; Table[Table[T[[n - k + 1, k]], {k, n, 1, -1}], {n, 1, Length[T]}] // Flatten (* Amiram Eldar, Feb 04 2020 *)
Extensions
More terms from Amiram Eldar, Feb 04 2020
Comments