A165279 Table read by antidiagonals: T(n, k) is the k-th number with n-1 odd-indexed Fibonacci numbers in its Zeckendorf representation.
1, 3, 2, 4, 5, 7, 8, 6, 15, 20, 9, 10, 18, 41, 54, 11, 13, 19, 49, 109, 143, 12, 14, 28, 52, 130, 287, 376, 21, 16, 36, 53, 138, 342, 753, 986, 22, 17, 39, 75, 141, 363, 897, 1973, 2583, 24, 23, 40, 96, 142, 371, 952, 2350, 5167, 6764, 25, 26, 44, 104, 198, 374
Offset: 1
Examples
Northwest corner: 1....3....4....8....9...11...12...21...22... 2....5....6...10...13...14...16...17...23... 7...15...18...19...28...36...39...40...44... 20..41...49...52...53...75...96..104..107... Examples: 12=8+3+1=F(6)+F(4)+F(2), zero odds, so 12 is in row 0. 28=21+5+2=F(8)+F(5)+F(3), two odds, so 28 is in row 2.
Programs
-
Mathematica
f[n_] := Module[{i = Ceiling[Log[GoldenRatio, Sqrt[5]*n]], v = {}, m = n}, While[i > 1, If[Fibonacci[i] <= m, AppendTo[v, 1]; m -= Fibonacci[i], If[v != {}, AppendTo[v, 0]]]; i--]; Total[Reverse[v][[1 ;; -1 ;; 2]]]]; T = GatherBy[SortBy[ Range[10^4], f], f]; Table[Table[T[[n - k + 1, k]], {k, n, 1, -1}], {n, 1, Length[T]}] // Flatten (* Amiram Eldar, Feb 04 2020 *)
Extensions
More terms from Amiram Eldar, Feb 04 2020
Comments