This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165310 #25 Mar 02 2023 13:42:00 %S A165310 1,3,12,57,291,1524,8049,42627,225948,1197993,6352419,33684996, %T A165310 178623201,947197443,5022773292,26634636057,141237492771,748950724884, %U A165310 3971517639249,21060066950787,111676809902268,592197066758793 %N A165310 a(0)=1, a(1)=3, a(n) = 7*a(n-1) - 9*a(n-2) for n > 1. %C A165310 a(n)/a(n-1) tends to (7+sqrt(13))/2 = 5.30277563... = 2+A098316. %C A165310 For n >= 2, a(n) equals 3^n times the permanent of the (2n-2) X (2n-2) matrix with 1/sqrt(3)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - _John M. Campbell_, Jul 08 2011 %H A165310 Vincenzo Librandi, <a href="/A165310/b165310.txt">Table of n, a(n) for n = 0..100</a> %H A165310 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,-9). %F A165310 G.f.: (1-4x)/(1-7x+9x^2). %F A165310 a(n) = Sum_{k=0..n} A165253(n,k)*3^(n-k). %F A165310 a(n) = ((13-sqrt(13))*(7+sqrt(13))^n+(13+sqrt(13))*(7-sqrt(13))^n )/(26*2^n). - _Klaus Brockhaus_, Sep 26 2009 %t A165310 LinearRecurrence[{7,-9},{1,3},30] (* _Harvey P. Dale_, Sep 23 2011 *) %o A165310 (Magma) I:=[1,3]; [n le 2 select I[n] else 7*Self(n-1)-9*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Sep 24 2011 %Y A165310 Cf. A098316, A165253. %K A165310 nonn %O A165310 0,2 %A A165310 _Philippe Deléham_, Sep 14 2009