This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165313 #48 Sep 07 2019 05:58:08 %S A165313 1,1,2,1,2,12,1,2,12,24,1,2,12,24,720,1,2,12,24,720,1440,1,2,12,24, %T A165313 720,1440,60480,1,2,12,24,720,1440,60480,120960,1,2,12,24,720,1440, %U A165313 60480,120960,3628800,1,2,12,24,720,1440,60480,120960,3628800,7257600,1,2,12 %N A165313 Triangle T(n,k) = A091137(k-1) read by rows. %C A165313 From a study of modified initialization formulas in Adams-Bashforth (1855-1883) multisteps method for numerical integration. On p.36, a(i,j) comes from (j!)*a(i,j) = Integral_{u=i,..,i+1} u*(u-1)*...*(u-j+1) du; see p.32. %C A165313 Then, with i vertical, j horizontal, with unreduced fractions, partial array is: %C A165313 0) 1, 1/2, -1/12, 1/24, -19/720, 27/1440, ... = 1/log(2) %C A165313 1) 1, 3/2, 5/12, -1/24, 11/720, -11/1440, ... = 2/log(2) %C A165313 2) 1, 5/2, 23/12, 9/24, -19/720, 11/1440, ... = 4/log(2) %C A165313 3) 1, 7/2, 53/12, 55/24, 251/720, -27/1440, ... = 8/log(2) %C A165313 4) 1, 9/2, 95/12, 161/24, 1901/720, 475/1440, ... = 16/log(2) %C A165313 5) 1, 11/2, 149/12, 351/24, 6731/720, 4277/1440, ... = 32/log(2) %C A165313 ... [improved by _Paul Curtz_, Jul 13 2019] %C A165313 First line: the reduced terms are A002206/A002207, logarithmic or Gregory numbers G(n). The difference between the second line and the first one is 0 together A002206/A002207. This is valid for the next lines. - _Paul Curtz_, Jul 13 2019 %C A165313 See A141417, A140825, A157982, horizontal numerators: A141047, vertical numerators: A000012, A005408, A140811, A141530, A157411. On p.56, coefficients are s(i,q) = (1/q!)* Integral_{u=-i-1,..,1} u*(u+1)*...*(u+q-1) du. %C A165313 Unreduced fractions array is: %C A165313 -1) 1, 1/2, 5/12, 9/24, 251/720, 475/1440, ... = A002657/A091137 %C A165313 0) 2, 0/2, 4/12, 8/24, 232/720, 448/1440, ... = A195287/A091137 %C A165313 1) 3, -3/2, 9/12, 9/24, 243/720, 459/1440, ... %C A165313 2) 4, -8/2, 32/12, 0/24, 224/720, 448/1440, ... %C A165313 3) 5, -15/2, 85/12, -55/24, 475/720, 475/1440, ... %C A165313 ... %C A165313 (on p.56 up to 6)). See A147998. Vertical numerators: A000027, A147998, A152064, A157371, A165281. %C A165313 From _Paul Curtz_, Jul 14 2019: (Start) %C A165313 Difference table from the second line and the first one difference: %C A165313 1, -1/2, -1/12, -1/24, -19/720, -27/1440, ... %C A165313 -3/2, 5/12, 1/24, 11/720, 11/1440, ... %C A165313 23/12, -9/24, -19/720, -11/1440, ... %C A165313 -55/24, 251/720, 27/1440, ... %C A165313 1901/720, -475/1440, %C A165313 -4277/1440, ... %C A165313 ... %C A165313 Compare the lines to those of the first array. %C A165313 The verticals are the signed diagonals of the first array. (End) %D A165313 P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Note 12, Arcueil, 1969. %e A165313 1; %e A165313 1,2; %e A165313 1,2,12; %e A165313 1,2,12,24; %e A165313 1,2,12,24,720; %t A165313 (* a = A091137 *) a[n_] := a[n] = Product[d, {d, Select[Divisors[n]+1, PrimeQ]}]*a[n-1]; a[0]=1; Table[Table[a[k-1], {k, 1, n}], {n, 1, 11}] // Flatten (* _Jean-François Alcover_, Dec 18 2014 *) %Y A165313 Cf. A090624, A091137. %Y A165313 Cf. A000012, A000079, A002657, A005408, A007525, A131920, A140811, A140825, A141047, A141417, A141530, A157411, A157982, A195287. %Y A165313 Cf. A002206, A002207. %K A165313 nonn,tabl %O A165313 1,3 %A A165313 _Paul Curtz_, Sep 14 2009