This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165340 #3 Mar 30 2012 18:51:04 %S A165340 153,135,153,18,513,153,3,27,351,153,9,729,1080,513,153,12,9,729,1080, %T A165340 513,153,33,54,189,1242,81,513,153,114,66,432,99,1458,702,351,153,78, %U A165340 855,762,567,684,792,1080,513,153,126,225,141,66,432,99,1458,702,351 %N A165340 Triangle read by rows: T(n,0) = smallest number m such that A165331(m)=n and A165330(m)=153; T(n,k+1) = sum of cubes of digits of T(n,k), 0<=k<n. %C A165340 T(n,k+1) = A055012(T(n,k)), 0 <= k < n; %C A165340 A165331(T(n,k)) = n - k; %C A165340 A165330(T(n,k)) = 153; T(n,n) = 153; %C A165340 10^10 < T(15,0) <= 22222599999999999999999, %C A165340 T(14,0) = 12558 = A055012(22222599999999999999999). %H A165340 R. Zumkeller, <a href="/A165340/b165340.txt">Rows 0 to 14 of the triangle, flattened.</a> %e A165340 The triangle begins: %e A165340 n=0: 153, %e A165340 n=1: 135 -> 1+3^3+5^3=153, %e A165340 n=2: 18 -> 1+8^3=513 -> 5^3+1+3^3=153, %e A165340 n=3: 3 -> 3^3=27 -> 2^3+7^3=351 -> 3^3+5^3+1=153, %e A165340 n=4: 9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153, %e A165340 n=5: 12 -> 1+2^3=9 -> 9^3=729 -> 7^3+2^3+9^3=1080 -> 1+0+8^3+0=513 -> 5^3+1+3^3=153, %e A165340 n=6: 33 -> 2*3^3=54 -> 5^3+4^3=189 -> 1+8^3+9^3=1242 -> 1+2^3+4^3+2^3=81 -> 8^3+1=513 -> 5^3+1+3^3=153. %Y A165340 A008585. %K A165340 base,nonn,tabl %O A165340 0,1 %A A165340 _Reinhard Zumkeller_, Sep 17 2009