This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165361 #25 Apr 24 2021 12:10:58 %S A165361 4,5,5,3,9,7,0,1,3,9,8,8,5,5,3,3,8,6,1,8,3,6,2,5,0,2,6,3,3,7,7,5,5,6, %T A165361 6,3,7,5,0,0,0,2,6,2,4,2,1,4,9,3,8,6,7,0,7,0,9,7,3,3,8,8,5,2,6,1,7,8, %U A165361 1,9,8,0,1,2,7,1,4,9,9,7,4,9,3,4,3,1,5,7,1,0,3,7,7,9,8,1,5,9,5,2,9,7,2,7,7 %N A165361 Decimal expansion of log 2 times the negative of Granville-Soundararajan constant. %C A165361 Given as formula and decimal expansion in p. 4 of Tao, citing Granville. %H A165361 Vincenzo Librandi, <a href="/A165361/b165361.txt">Table of n, a(n) for n = 0..2000</a> %H A165361 A. Granville and K. Soundararajan, <a href="http://www.math.nyu.edu/~tschinke/books/gauss-dirichlet/granville.pdf">Negative values of truncations to L(1,chi), Analytic number theory: a tribute to Gauss and Dirichlet</a>, Clay Math. Proc. Volume 7, 2007. %H A165361 Terence Tao, <a href="http://arxiv.org/abs/0908.4323">A remark on partial sums involving the Mobius function</a>, Bull. Aust. Math. Soc. 81 (2010), no. 2, 343-349. %F A165361 Equals log(2)*A126689 = A002162*A126689. %e A165361 -0.455397.... %t A165361 RealDigits[ -Log[2]*(4*PolyLog[2, -Sqrt[E]] + Pi^2/3 + 1) , 10, 105] // First (* _Jean-François Alcover_, Feb 15 2013, after _R. J. Mathar_ *) %o A165361 (PARI) -log(2)*(Pi^2/3+4*polylog(2, -exp(1/2))+1) \\ _Charles R Greathouse IV_, Jul 18 2014 %o A165361 (Python) %o A165361 from mpmath import mp, pi, sqrt, polylog, log %o A165361 mp.dps=106 %o A165361 C = -log(2)*(4*polylog(2, -sqrt(e)) + pi**2/3 + 1) %o A165361 print([int(n) for n in list(str(C)[2:-1])]) # _Indranil Ghosh_, Jul 03 2017 %K A165361 cons,nonn %O A165361 0,1 %A A165361 _Jonathan Vos Post_, Sep 16 2009 %E A165361 More digits from _R. J. Mathar_, Sep 21 2009