cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165516 Perfect squares (A000290) that can be expressed as the sum of three consecutive triangular numbers (A000217).

This page as a plain text file.
%I A165516 #41 Jul 07 2024 17:32:11
%S A165516 4,64,361,6241,35344,611524,3463321,59923081,339370084,5871850384,
%T A165516 33254804881,575381414521,3258631508224,56381506772644,
%U A165516 319312633001041,5524812282304561,31289379402593764,541375222159074304,3066039868821187801,53049246959306977201,300440617765073810704,5198284826789924691364
%N A165516 Perfect squares (A000290) that can be expressed as the sum of three consecutive triangular numbers (A000217).
%C A165516 Those perfect squares that can be expressed as the sum of three consecutive triangular numbers correspond to integer solutions of the equation T(k)+T(k+1)+T(k+2)=s^2, or equivalently to 3k^2+9k+8=2s^2. Hence solutions occur whenever 1/2 (3k^2+9k+8) is a perfect square, or equivalently when s>=2 and sqrt(24s^2-15) is congruent to 3 mod 6. Furthermore, with the exception of the first term, the members of this sequence are precisely those perfect squares that are also centered triangular numbers (A005448). For s>=2, the values of s are in A129445, and the corresponding indices of the smallest of the 3 triangular numbers are given in A165517.
%H A165516 Vincenzo Librandi, <a href="/A165516/b165516.txt">Table of n, a(n) for n = 1..1000</a>
%H A165516 Tom Beldon and Tony Gardiner, <a href="http://www.jstor.org/stable/3621134">Triangular Numbers and Perfect Squares</a>, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423-431.
%H A165516 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,98,-98,-1,1).
%F A165516 a(n) = a(n-1) + 98*a(n-2) - 98*a(n-3) - a(n-4) + a(n-5).
%F A165516 a(n) = 98*a(n-2) - a(n-4) - 30. - _Ant King_, Dec 09 2010
%F A165516 a(n) = (1/32)*(10 -3*(sqrt(6)-3) * (5-2*sqrt(6))^n + (2+ sqrt(6)) * (-5-2*sqrt(6))^n -(sqrt(6)-2) *(2*sqrt(6)-5)^n + 3*(3+sqrt(6)) *(5+2*sqrt(6))^n).
%F A165516 G.f.: x*(4+60*x-95*x^2+x^4)/((1-x)*(1-10*x+x^2)*(1+10*x+x^2)).
%F A165516 16*a(n) = 5 +9*A072256(n+1) +2*(-1)^n*A054320(n). - _R. J. Mathar_, Apr 28 2020
%e A165516 The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 (=T63+T64+T65), and hence a(4)=6241.
%t A165516 Select[Range[2,1.8 10^7],Mod[Sqrt[24#^2-15],6]==3 &]^2
%t A165516 CoefficientList[Series[(4 + 60 x - 95 x^2 + x^4)/((1 - x) (1 - 10 x + x^2) (1 + 10 x + x^2)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Mar 14 2014 *)
%t A165516 LinearRecurrence[ {1,98,-98,-1,1}, {4, 64, 361, 6241, 35344}, 50] (* _G. C. Greubel_, Oct 21 2018 *)
%o A165516 (PARI) Vec(O(x^66)+x*(4+60*x-95*x^2+x^4)/((1-x)*(1-10*x+x^2)*(1+10*x+x^2))) \\ _Joerg Arndt_, Mar 13 2014
%o A165516 (Magma) I:=[4, 64, 361, 6241, 35344]; [n le 5 select I[n] else Self(n-1) + 98*Self(n-2) - 98*Self(n-3) - Self(n-4) + Self(n-5): n in [1..50]]; // _G. C. Greubel_, Oct 21 2018
%Y A165516 Cf. A000290, A129445, A005448, A000290, A000217, A165517.
%K A165516 easy,nonn
%O A165516 1,1
%A A165516 _Ant King_, Sep 25 2009, Oct 01 2009
%E A165516 a(1) = 4 added by _N. J. A. Sloane_, Sep 28 2009, at the suggestion of _Alexander R. Povolotsky_
%E A165516 a(16)-a(21) added by _Alex Ratushnyak_, Mar 12 2014