cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165517 Indices of the least triangular numbers (A000217) for which three consecutive triangular numbers sum to a perfect square (A000290).

This page as a plain text file.
%I A165517 #20 Sep 08 2022 08:45:47
%S A165517 0,5,14,63,152,637,1518,6319,15040,62565,148894,619343,1473912,
%T A165517 6130877,14590238,60689439,144428480,600763525,1429694574,5946945823,
%U A165517 14152517272,58868694717,140095478158,582740001359,1386802264320
%N A165517 Indices of the least triangular numbers (A000217) for which three consecutive triangular numbers sum to a perfect square (A000290).
%C A165517 Those perfect squares that can be expressed as the sum of three consecutive triangular numbers correspond to integer solutions of the equation T(k)+T(k+1)+T(k+2)=s^2, or equivalently to 3k^2 + 9k + 8 = 2s^2. Hence solutions occur whenever (3k^2 + 9k + 8)/2 is a perfect square, or equivalently when s>=2 and sqrt(24s^2 - 15) is congruent to 3 mod 6. This sequence returns the index of the smallest of the 3 triangular numbers, the values of s^2 are given in A165516 and, with the exception of the first term, the values of s are in A129445.
%H A165517 G. C. Greubel, <a href="/A165517/b165517.txt">Table of n, a(n) for n = 1..1000</a>
%H A165517 Tom Beldon and Tony Gardiner, <a href="http://www.jstor.org/stable/3621134">Triangular Numbers and Perfect Squares</a>, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423-431.
%H A165517 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,10,-10,-1,1).
%F A165517 a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5).
%F A165517 G.f.: x(x^3 + x^2 - 9x - 5)/((x-1)(x^4 - 10x^2 + 1)).
%F A165517 a(n) = 10*a(n-2) - a(n-4) + 12. - _Zak Seidov_, Sep 25 2009
%e A165517 The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 = T(63) + T(64) + T(65). Hence a(4)=63.
%t A165517 TriangularNumber[ n_ ]:=1/2 n (n+1);Select[ Range[ 0,10^7 ], IntegerQ[ Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1 ]+TriangularNumber[ #+2 ] ] ] & ]
%t A165517 CoefficientList[Series[x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)), {x,0,50}], x] (* or *) LinearRecurrence[{1,10,-10,-1,1}, {0, 5, 14, 63, 152}, 50] (* _G. C. Greubel_, Feb 17 2017 *)
%o A165517 (PARI) x='x+O('x^50); concat([0], Vec(x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)))) \\ _G. C. Greubel_, Feb 17 2017
%o A165517 (Magma) I:=[0, 5, 14, 63, 152]; [n le 5 select I[n] else Self(n-1) + 10*Self(n-2) - 10*Self(n-3) - Self(n-4) + Self(n-5): n in [1..50]]; // _G. C. Greubel_, Oct 21 2018
%Y A165517 Cf. A000290, A129445, A000217, A165516.
%K A165517 easy,nonn
%O A165517 1,2
%A A165517 _Ant King_, Sep 25 2009, Oct 01 2009
%E A165517 a(1) = 0 added by _N. J. A. Sloane_, Sep 28 2009, at the suggestion of _Alexander R. Povolotsky_
%E A165517 More terms from _Zak Seidov_, Sep 25 2009