cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165518 Perfect squares (A000290) that can be expressed as the sum of four consecutive triangular numbers (A000217).

This page as a plain text file.
%I A165518 #40 Feb 16 2022 23:36:13
%S A165518 4,100,3364,114244,3880900,131836324,4478554084,152139002500,
%T A165518 5168247530884,175568277047524,5964153172084900,202605639573839044,
%U A165518 6882627592338442564,233806732499933208100,7942546277405390632804,269812766699283348307204,9165691521498228451812100,311363698964240484013304164
%N A165518 Perfect squares (A000290) that can be expressed as the sum of four consecutive triangular numbers (A000217).
%C A165518 As T(n) + T(n+1) = (n+1)^2 and T(n+2) + T(n+3) = (n+3)^2, it follows that the equation T(n) + T(n+1) + T(n+2) + T(n+3) = s^2 becomes (n+1)^2 + (n+3)^2 = s^2. Hence the solutions to this equation correspond to those Pythagorean triples with shorter legs that differ by two, such as 6^2 + 8^2 = 10^2.
%C A165518 Terms are the squares of the hypotenuses of Pythagorean triangles where other two sides are m and m+2, excepting the initial 4. See A075870. - _Richard R. Forberg_, Aug 15 2013
%H A165518 Harvey P. Dale, <a href="/A165518/b165518.txt">Table of n, a(n) for n = 1..600</a>
%H A165518 Tom Beldon and Tony Gardiner, <a href="http://www.jstor.org/stable/3621134">Triangular Numbers and Perfect Squares</a>, The Mathematical Gazette, Vol. 86, No. 507, (2002), pp. 423-431.
%H A165518 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).
%F A165518 a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
%F A165518 a(n) = 34*a(n-1) - a(n-2) - 32.
%F A165518 a(n) = (2 + (3+2*sqrt(2))^(2*n+1) + (3-2*sqrt(2))^(2*n+1))/2.
%F A165518 a(n) = ceiling((1/2)*(2 + (3+2*sqrt(2))^(2n+1))).
%F A165518 G.f.: 4*x*(x^2-10*x+1)/((1-x)*(x^2-34*x+1)).
%F A165518 a(n) = 4*A008844(n-1). - _R. J. Mathar_, Dec 14 2010
%F A165518 a(n) = A075870(n)^2.  - _Richard R. Forberg_, Aug 15 2013
%e A165518 As the third perfect square that can be expressed as the sum of four consecutive triangular numbers is 3364 = T(39) + T(40) + T(41) + T(42), we have a(3)=3364.
%e A165518 The first term, 4, equals T(-1) + T(0) + T(1) + T(2).
%p A165518 A165518:=n->(1/2)*(2+(3+2*sqrt(2))^(2*n+1)+(3-2*sqrt(2))^(2*n+1)); seq(A165518(k), k=1..20); # _Wesley Ivan Hurt_, Oct 24 2013
%t A165518 TriangularNumber[n_]:=1/2 n (n+1); data=Select[Range[10^7],IntegerQ[Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1]+TriangularNumber[ #+2]+TriangularNumber[ #+3]]] &];2(#^2+4#+5)&/@data
%t A165518 t={4, 100}; Do[AppendTo[t, 34 t[[-1]] - t[[-2]] - 32], {20}]; t
%t A165518 LinearRecurrence[{35,-35,1},{4,100,3364},20] (* _Harvey P. Dale_, May 22 2012 *)
%o A165518 (PARI) x='x+O('x^50); Vec(4*x*(1-10*x+x^2)/((1-x)*(1-34*x+x^2))) \\ _G. C. Greubel_, Oct 21 2018
%o A165518 (Magma) I:=[4,100,3364]; [n le 3 select I[n] else 35*Self(n-1) - 35*Self(n-2) +Self(n-3): n in [1..50]]; // _G. C. Greubel_, Oct 21 2018
%Y A165518 Cf. A000290, A000217, A165516 (squares that can be expressed as the sum of three consecutive triangular numbers), A029549, A075870.
%K A165518 easy,nice,nonn
%O A165518 1,1
%A A165518 _Ant King_, Sep 28 2009
%E A165518 Extended by _T. D. Noe_, Dec 09 2010