This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165563 #21 Sep 08 2022 08:45:48 %S A165563 1,7,41,151,409,911,1777,3151,5201,8119,12121,17447,24361,33151,44129, %T A165563 57631,74017,93671,117001,144439,176441,213487,256081,304751,360049, %U A165563 422551,492857,571591,659401,756959,864961,984127,1115201,1258951,1416169,1587671 %N A165563 a(n) = 1 + 2*n + n^2 + 2*n^3 + n^4. %C A165563 Also binomial transform of the quasi-finite sequence 1,6,28,48,24,0 (0 continued). %H A165563 Vincenzo Librandi, <a href="/A165563/b165563.txt">Table of n, a(n) for n = 0..10000</a> %H A165563 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1) %F A165563 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). %F A165563 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24 -> 4th differences are 24 = A010863(n). %F A165563 G.f.: (-1 - 2*x - 16*x^2 - 6*x^3 + x^4)/(x-1)^5. %t A165563 Table[1+2n+n^2+2n^3+n^4,{n,0,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,7,41,151,409},50] (* _Harvey P. Dale_, Nov 13 2021 *) %o A165563 (Magma) [1 +2*n +n^2 +2*n^3 +n^4: n in [0..40] ]; // _Vincenzo Librandi_, Aug 06 2011 %o A165563 (PARI) a(n)=1+2*n+n^2+2*n^3+n^4 \\ _Charles R Greathouse IV_, Oct 16 2015 %K A165563 nonn,easy %O A165563 0,2 %A A165563 _Paul Curtz_, Sep 22 2009 %E A165563 Edited and extended by _R. J. Mathar_, Sep 25 2009