This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165621 #25 Jun 20 2021 03:09:00 %S A165621 1,1,1,1,1,1,2,2,1,1,2,3,3,1,1,5,5,4,4,1,1,5,9,9,5,5,1,1,14,14,14,14, %T A165621 6,6,1,1,14,28,28,20,20,7,7,1,1,42,42,48,48,27,27,8,8,1,1,42,90,90,75, %U A165621 75,35,35,9,9,1,1 %N A165621 Riordan array (c(x^2)*(1+xc(x^2)), xc(x^2)). %C A165621 Inverse of A165620. Row sums are A001405(n+1). Diagonal sums are A026008. %C A165621 Factors as (1+xc(x^2),x)*(c(x^2),xc(x^2)). Transforms (-2)^n to a sequence with Hankel transform F(2n+1). %C A165621 In general, the Hankel transform of r^n by this matrix will have a Hankel transform with g.f. (1-x)/(1+(r-1)x+x^2). %H A165621 Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry4/barry64.html">Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays</a>, JIS 12 (2009) 09.8.6. %F A165621 Number triangle T(n,k)=sum{j=0..n, b(n-j)*sum{i=0..k, (-1)^(k-i)*C(k,i)*sum{m=0..i, C(i,m)*(C(i-m,m+k)-C(i-m,i+k+2))}}} where b(n) is the sequence beginning with 1 followed by the aerated Catalan numbers: 1,1,0,1,0,2,0,5,0,14,... %e A165621 Triangle begins %e A165621 1, %e A165621 1, 1, %e A165621 1, 1, 1, %e A165621 2, 2, 1, 1, %e A165621 2, 3, 3, 1, 1, %e A165621 5, 5, 4, 4, 1, 1, %e A165621 5, 9, 9, 5, 5, 1, 1, %e A165621 14, 14, 14, 14, 6, 6, 1, 1, %e A165621 14, 28, 28, 20, 20, 7, 7, 1, 1, %e A165621 42, 42, 48, 48, 27, 27, 8, 8, 1, 1 %e A165621 The production array of this matrix begins %e A165621 1, 1, %e A165621 0, 0, 1, %e A165621 1, 1, 0, 1, %e A165621 -1, 0, 1, 0, 1, %e A165621 1, 0, 0, 1, 0, 1, %e A165621 -1, 0, 0, 0, 1, 0, 1, %e A165621 1, 0, 0, 0, 0, 1, 0, 1, %e A165621 -1, 0, 0, 0, 0, 0, 1, 0, 1, %e A165621 1, 0, 0, 0, 0, 0, 0, 1, 0, 1 %t A165621 (* The function RiordanArray is defined in A256893. *) %t A165621 nmax = 10; %t A165621 M = PadRight[#, nmax+1]& /@ RiordanArray[(1-#)/(1-#^4)&, #/(1+#^2)&, nmax+1]; %t A165621 T = Inverse[M]; %t A165621 Table[T[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 16 2019 *) %o A165621 (Sage) # Algorithm of L. Seidel (1877) %o A165621 # Prints the first n rows of the signed version of the triangle. %o A165621 def Signed_A165621_triangle(n) : %o A165621 D = [0]*(n+4); D[1] = 1 %o A165621 b = False; h = 3 %o A165621 for i in range(2*n) : %o A165621 if b : %o A165621 for k in range(h,0,-1) : D[k] += D[k-1] %o A165621 h += 1 %o A165621 else : %o A165621 for k in range(1,h, 1) : D[k] -= D[k+1] %o A165621 if b : print([D[z] for z in (2..h-2)]) %o A165621 b = not b %o A165621 Signed_A165621_triangle(11) # _Peter Luschny_, May 01 2012 %K A165621 easy,nonn,tabl %O A165621 0,7 %A A165621 _Paul Barry_, Sep 22 2009