A165675 Triangle read by rows. T(n, k) = (n - k + 1)! * H(k, n - k), where H are the hyperharmonic numbers. For 0 <= k <= n.
1, 1, 1, 2, 3, 1, 6, 11, 5, 1, 24, 50, 26, 7, 1, 120, 274, 154, 47, 9, 1, 720, 1764, 1044, 342, 74, 11, 1, 5040, 13068, 8028, 2754, 638, 107, 13, 1, 40320, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 362880, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 0
Examples
Triangle T(n, k) begins: [0] 1; [1] 1, 1; [2] 2, 3, 1; [3] 6, 11, 5, 1; [4] 24, 50, 26, 7, 1; [5] 120, 274, 154, 47, 9, 1; [6] 720, 1764, 1044, 342, 74, 11, 1; [7] 5040, 13068, 8028, 2754, 638, 107, 13, 1; Seen as an array (the triangle arises when read by descending antidiagonals): [0] 1, 1, 2, 6, 24, 120, 720, 5040, ... [1] 1, 3, 11, 50, 274, 1764, 13068, 109584, ... [2] 1, 5, 26, 154, 1044, 8028, 69264, 663696, ... [3] 1, 7, 47, 342, 2754, 24552, 241128, 2592720, ... [4] 1, 9, 74, 638, 5944, 60216, 662640, 7893840, ... [5] 1, 11, 107, 1066, 11274, 127860, 1557660, 20355120, ... [6] 1, 13, 146, 1650, 19524, 245004, 3272688, 46536624, ... [7] 1, 15, 191, 2414, 31594, 434568, 6314664, 97053936, ...
Crossrefs
Programs
-
Maple
nmax := 8; for n from 0 to nmax do a(n, 0) := n! od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, revised Nov 27 2012 # Shows the array format, using hyperharmonic numbers. H := proc(n, k) option remember; if n = 0 then 1/(k+1) else add(H(n - 1, j), j = 0..k) fi end: seq(lprint(seq((k + 1)!*H(n, k), k = 0..7)), n = 0..7); # Shows the array format, using the hypergeometric formula. A := (n, k) -> (k+1)*((n + k)! / n!)*hypergeom([-k, 1, 1], [2, n + 1], 1): seq(lprint(seq(simplify(A(n, k)), k = 0..7)), n = 0..7); # Peter Luschny, Jul 03 2022
-
Mathematica
a[n_] := SymmetricPolynomial[n - 1, t[n]]; z = 10; t[n_] := Table[k - 1, {k, 1, n}]; t1 = Table[a[n], {n, 1, z}] (* A000142 *) t[n_] := Table[k, {k, 1, n}]; t2 = Table[a[n], {n, 1, z}] (* A000254 *) t[n_] := Table[k + 1, {k, 1, n}]; t3 = Table[a[n], {n, 1, z}] (* A001705 *) t[n_] := Table[k + 2, {k, 1, n}]; t4 = Table[a[n], {n, 1, z}] (* A001711 *) t[n_] := Table[k + 3, {k, 1, n}]; t5 = Table[a[n], {n, 1, z}] (* A001716 *) t[n_] := Table[k + 4, {k, 1, n}]; t6 = Table[a[n], {n, 1, z}] (* A001721 *) t[n_] := Table[k + 5, {k, 1, n}]; t7 = Table[a[n], {n, 1, z}] (* A051524 *) t[n_] := Table[k + 6, {k, 1, n}]; t8 = Table[a[n], {n, 1, z}] (* A051545 *) t[n_] := Table[k + 7, {k, 1, n}]; t9 = Table[a[n], {n, 1, z}] (* A051560 *) t[n_] := Table[k + 8, {k, 1, n}]; t10 = Table[a[n], {n, 1, z}] (* A051562 *) t[n_] := Table[k + 9, {k, 1, n}]; t11 = Table[a[n], {n, 1, z}] (* A051564 *) t[n_] := Table[k + 10, {k, 1, n}];t12 = Table[a[n], {n, 1, z}] (* A203147 *) t = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}; TableForm[t] (* A165675 in square format *) m[i_, j_] := t[[i]][[j]]; (* A165675 as a sequence *) Flatten[Table[m[i, n + 1 - i], {n, 1, 10}, {i, 1, n}]] (* Clark Kimberling, Dec 29 2011 *) A[n_, k_] := (k + 1)*((n + k)! / n!)*HypergeometricPFQ[{-k, 1, 1}, {2, n + 1}, 1]; Table[A[n, k], {n, 0, 7}, {k, 0, 7}] // TableForm (* Peter Luschny, Jul 03 2022 *)
-
Python
from functools import cache @cache def Trow(n: int) -> list[int]: if n == 0: return [1] row = Trow(n - 1) + [1] for m in range(n - 1, 0, -1): row[m] = (n - m + 1) * row[m] + row[m - 1] row[0] *= n return row for n in range(9): print(Trow(n)) # Peter Luschny, Feb 27 2025
Formula
The hyperharmonic numbers are H(n, k) = Sum_{j=0..k} H(n - 1, j), with base condition H(0, k) = 1/(k + 1).
T(n, k) = (n - k + 1)*T(n - 1, k) + T(n - 1, k - 1), 1 <= k <= n-1, with T(n, 0) = n! and T(n, n) = 1.
From Peter Luschny, Jul 03 2022: (Start)
The rectangular array is given by:
A(n, k) = (k + 1)!*H(n, k).
A(n, k) = (k + 1)*((n + k)! / n!)*hypergeom([-k, 1, 1], [2, n + 1], 1). (End)
From Werner Schulte, Feb 26 2025: (Start)
T(n, k) = n * T(n-1, k) + (n-1)! / (k-1)! for 0 < k < n.
T(n, k) = (Sum_{i=k..n} 1/i) * n! / (k-1)! for 0 < k <= n.
Matrix inverse M = T^(-1) is given by: M(n, n) = 1, M(n, n-1) = 1 - 2 * n for n > 0, M(n, n-2) = (n-1)^2 for n > 1, and M(i, j) = 0 otherwise. (End)
Extensions
New name from Peter Luschny, Jul 03 2022
Comments