This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165718 #31 Dec 07 2024 19:30:46 %S A165718 3,5,10,13,20,24,33,38,49,55,68,75,90,98,115,124,143,153,174,185,208, %T A165718 220,245,258,285,299,328,343,374,390,423,440,475,493,530,549,588,608, %U A165718 649,670,713,735,780,803,850,874,923,948,999,1025,1078,1105,1160,1188 %N A165718 Integers of the form k*(k+7)/6. %C A165718 Integers of the form k + k*(k+1)/6 = k + A000217(k)/3; for k see A007494, for A000217(k)/3 see A001318. - _R. J. Mathar_, Sep 25 2009 %C A165718 Only 3 terms are prime numbers (3,5,13). Are all the rest composite? %C A165718 The only prime terms in this sequence are 3, 5, and 13. If k=6j+1 or k=6j+4, k*(k+7) is congruent to 2 mod 6 and will never be an integer. If k=6j, k*(k+7)/6 = j*(6j+7) which is prime only for j=1 (i.e., 13 is in the sequence). If k=6j+2, k*(k+7)/6 = (3j+1)*(2j+3) which is prime only for j=0 (i.e., 3 is in the sequence). If k=6j+3, k*(k+7)/6 = (2j+1)*(3j+5) which is prime only for j=0 (i.e., 5 is in the sequence). If k=6j+5, k*(k+7)/6 = (6j+5)*(j+2) which is never prime. Thus {3,5,13} are the only primes in this sequence. - _Derek Orr_, Feb 26 2017 %C A165718 Conjecturally, the sequence terms are the exponents in the expansion of x/(1 + x) + Sum_{n >= 1} (-1)^n * x^(2*n-1) / Product_{k = 1..n+1} (1 + x^(2*k-1)) = x^3 - x^5 + x^10 - x^13 + x^20 - x^24 + - .... - _Peter Bala_, Nov 20 2024 %H A165718 Colin Barker, <a href="/A165718/b165718.txt">Table of n, a(n) for n = 1..1000</a> %H A165718 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A165718 From _R. J. Mathar_, Sep 25 2009: (Start) %F A165718 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). %F A165718 G.f.: x*(-3-2*x+x^2+x^3)/((1+x)^2 * (x-1)^3). (End) %F A165718 a(n) = Sum_{i=1..n} numerator(i/2) + denominator(i/2). - _Wesley Ivan Hurt_, Feb 26 2017 %F A165718 From _Colin Barker_, Feb 26 2017: (Start) %F A165718 a(n) = (3*n^2 + 14*n) / 8 for n even. %F A165718 a(n) = (3*n^2 + 16*n + 5) / 8 for n odd. (End) %F A165718 From _Peter Bala_, Dec 15 2020: (Start) %F A165718 a(n) = A001318(n+2) - 2. %F A165718 Exponents in the expansion of Sum_{n >= 0} x^n * Product_{k = 1..n+1} (1 - x^k) = 1 - x^3 - x^5 + x^10 + x^13 - x^20 - x^24 + + - - .... (End) %F A165718 Sum_{n>=1} 1/a(n) = 159/98 - 2*Pi/(7*sqrt(3)). - _Amiram Eldar_, Jul 26 2024 %F A165718 E.g.f.: (x*(19 + 3*x)*cosh(x) + (5 + 17*x + 3*x^2)*sinh(x))/8. - _Stefano Spezia_, Dec 07 2024 %e A165718 For k=1, 2, 3, ..., k*(k+7)/6 is 4/3, 3, 5, 22/3, 10, 13, 49/3, 20, 24, 85/3, 33, ..., and the integer values out of these become the sequence. %t A165718 q=3;s=0;lst={};Do[s+=((n+q)/q);If[IntegerQ[s],AppendTo[lst,s]],{n,6!}];lst %o A165718 (PARI) Vec(x*(-3-2*x+x^2+x^3) / ((1+x)^2*(x-1)^3) + O(x^60)) \\ _Colin Barker_, Feb 26 2017 %o A165718 (PARI) a(n)=if(n%2, 3*n^2 + 16*n + 5, 3*n^2 + 14*n)/8 \\ _Charles R Greathouse IV_, Feb 27 2017 %Y A165718 Cf. A000217, A001318, A007494, A165717. %K A165718 nonn,easy %O A165718 1,1 %A A165718 _Vladimir Joseph Stephan Orlovsky_, Sep 24 2009 %E A165718 Definition simplified by _R. J. Mathar_, Sep 25 2009