A165735 Surviving integers under the double-count Josephus problem (see A054995), modulo 3.
1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
If we use n = 10, then we put numbers 1,2,3,4,5,6,7,8,9,10 in a circle. We eliminate 3,6,9,2,7,1,8,5,10, and the last number that remains is 4. Therefore J3(10) = 4 and J3(10) = 1 mod 3.
Links
- Hiroshi Matsui, Masakazu Naito and Naoyuki Totani, The Period and the Distribution of the Fibonacci-like Sequence Under Various Moduli, Undergraduate Math Journal, Rose-Hulman Institute of Technology, Vol. 10, Issue 1, 2009.
- Masakazu Naito and Ryohei Miyadera, The Self-Similarity of the Josephus Problem and its Variants, Visual Mathematics, Volume 11, No.2, 2009.
- Wolfram MathWorld, Josephus Problem
- Index entries for sequences related to the Josephus Problem
Programs
-
Mathematica
J3[1] = 1; J3[2] = 2; J3[n_] := J3[n] = Block[{m, t}, t = Mod[n, 3]; m = (n - t)/3; Which[t == 0, J3[2 m] + Floor[(J3[2 m] - 1)/2], t == 1, If[J3[2 m + 1] == 1, 3 m + 1, J3[2 m + 1] + Floor[J3[2 m + 1]/2] - 2], t == 2, J3[2 m + 1] + Floor[J3[2 m + 1]/2] + 1]]; Table[Mod[J3[n], 3], {n, 1, 200}]
Formula
(1) J3(1) = 1 and J3(2) = 2.
(2) J3(3m) = J3(2m) + [(J3(2m)-1)/2].
(3a) J3(3m+1) = 3m + 1 (if J3(2m + 1) = 1).
(3b) J3(3m+1) = J3(2m+1) + [J3(2m+1)/2] - 2 (if J3(2m + 1) > 1).
(4) J3(3m+2) = J3(2m+1) + [J3(2m+1)/2] + 1
Extensions
New name from Gordon Atkinson, Aug 21 2019
Comments