A165743 The greatest common divisor of n and 210.
1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 1, 6, 1, 14, 15, 2, 1, 6, 1, 10, 21, 2, 1, 6, 5, 2, 3, 14, 1, 30, 1, 2, 3, 2, 35, 6, 1, 2, 3, 10, 1, 42, 1, 2, 15, 2, 1, 6, 7, 10, 3, 2, 1, 6, 5, 14, 3, 2, 1, 30, 1, 2, 21, 2, 5, 6, 1, 2, 3, 70, 1, 6, 1, 2, 15, 2, 7, 6, 1, 10, 3, 2, 1, 42, 5, 2, 3, 2, 1, 30, 7, 2, 3, 2, 5, 6
Offset: 1
Crossrefs
Cf. A089128.
Programs
-
Maple
seq(gcd(n, 210), n = 1 .. 100); # Emeric Deutsch, Oct 31 2009
-
Mathematica
a[n_] := GCD[n, 210]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
-
PARI
a(n) = gcd(n, 210); \\ Amiram Eldar, Sep 16 2023
Formula
From Amiram Eldar, Sep 16 2023: (Start)
a(n) = gcd(n, 210).
Multiplicative with a(p^e) = p if p <= 7, and 1 otherwise.
Dirichlet g.f.: zeta(s) * (1 + 1/2^s) * (1 + 2/3^s) * (1 + 4/5^s) * (1 + 6/7^s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 117/14. (End)
Extensions
Extended by Emeric Deutsch, Oct 31 2009
Comments