This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165779 #32 Sep 25 2024 15:10:48 %S A165779 1,4,6,10,14,17,26,29,54,62,77,121,344,476,1012,1717,1954,2929,2993, %T A165779 3014,3304,4704,8882,24042,43572,45722,54913,57893,72566,74473,82092, %U A165779 117302 %N A165779 Numbers k such that |2^k-993| is prime. %C A165779 If p = 2^k-993 is prime, then 2^(k-1)*p is a solution to sigma(x)-2x = 992 = 2^5*(2^5-1) = 2*A000396(3). %e A165779 a(4) = 10 since 2^10-993 = 31 is prime. %e A165779 For exponents a(1) = 1, a(2) = 4 and a(3) = 6, we get 2^a(n)-993 = -991, -977 and -929 which are negative, but which are prime in absolute value. %t A165779 Select[Table[{n, Abs[2^n - 993]}, {n,0,100}], PrimeQ[#[[2]]] &][[All, 1]] (* _G. C. Greubel_, Apr 08 2016 *) %o A165779 (PARI) lista(nn) = for(n=1, nn, if(ispseudoprime(abs(2^n-993)), print1(n, ", "))); \\ _Altug Alkan_, Apr 08 2016 %o A165779 (Magma) [n: n in [1..1100] |IsPrime(2^n-993)]; // _Vincenzo Librandi_, Apr 09 2016 %o A165779 (Python) %o A165779 from sympy import isprime, nextprime %o A165779 def afind(limit): %o A165779 k, pow2 = 1, 2 %o A165779 for k in range(1, limit+1): %o A165779 if isprime(abs(pow2-993)): %o A165779 print(k, end=", ") %o A165779 k += 1 %o A165779 pow2 *= 2 %o A165779 afind(2000) # _Michael S. Branicky_, Dec 26 2021 %Y A165779 Cf. A000396, A096818, A165778, A165780. %K A165779 nonn,more %O A165779 1,2 %A A165779 _M. F. Hasler_, Oct 11 2009 %E A165779 a(23) from _Altug Alkan_, Apr 08 2016 %E A165779 a(24) from _Michael S. Branicky_, Dec 26 2021 %E A165779 a(25)-a(26) from _Michael S. Branicky_, Apr 06 2023 %E A165779 a(27)-a(32) from _Michael S. Branicky_, Sep 25 2024