A165781 a(n) = (2^A002326(n)-1)/(2*n+1).
1, 1, 3, 1, 7, 93, 315, 1, 15, 13797, 3, 89, 41943, 9709, 9256395, 1, 31, 117, 1857283155, 105, 25575, 381, 91, 178481, 42799, 5, 84973577874915, 19065, 4599, 4885260612740877, 18900352534538475, 1, 63, 1101298153654301589
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..1672
Programs
-
Maple
A002326 := proc(n) if n = 0 then 1 ; else numtheory[order](2,2*n+1) ; end if ; end proc: A165781 := proc(n) (2^A002326(n)-1)/(2*n+1) ; end proc: seq(A165781(n),n=0..60) ; # R. J. Mathar, Nov 16 2009
-
Mathematica
a[n_] := (2^MultiplicativeOrder[2, 2n+1]-1)/(2n+1); a /@ Range[0, 40] (* Jean-François Alcover, Jun 04 2020 *)
-
PARI
a(n)=(2^znorder(Mod(2,n=2*n+1))-1)/n \\ M. F. Hasler, Sep 20 2017
Extensions
Sign in definition and offset corrected by R. J. Mathar, Nov 16 2009
Comments