cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165783 a(n) = A002326(n-1) + A000120(A165781(n-1)).

Original entry on oeis.org

2, 3, 6, 4, 9, 15, 18, 5, 12, 27, 8, 15, 30, 27, 42, 6, 15, 17, 54, 16, 30, 21, 17, 32, 31, 10, 78, 28, 27, 87, 90, 7, 18, 99, 33, 49, 12, 29, 45, 56, 81, 123, 10, 39, 15, 16, 13, 50, 72, 45, 150, 74, 16, 159, 54, 50, 42, 63, 15, 33, 165, 26, 150, 8, 21, 195, 26, 53, 102, 207
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 26 2009

Keywords

Comments

Given a shift register : r(k)=r(k-1)+ X if r(k-1) is not divisible Y, else r(k)=r(k-1)/Y.
Gcd(r(0), X))=1, Gcd(X, Y)=1.
Then the length of the period orbit of such a register is L + digitsum (r(L)*(Y^L-1)/ X). Digitsum(z)in base X.
r(L) a point from period orbit, L minimal possible exponent such that (Y^L-1)/X)is a positive integer.
Number of period orbits is the order of the cyclic group connected to the register.
a(n) is the period length for Y=2, X=2*n-1, r(L)=1. [Ctibor O. Zizka, Nov 24 2009]

Examples

			n=1, a(1)=1 + digitsum(1)= 2.
n=2, a(2)=2 + digitsum(1)=3.
n=3, a(3)= 4 + digitsum(3) = 6.
n=4, a(4)= 3 + digitsum(1)=4.
n=5, a(5)= 6 + digitsum(7)=9. [_Ctibor O. Zizka_, Nov 24 2009]
		

Crossrefs

Programs

  • Maple
    A002326 := proc(n) if n = 0 then 1; else numtheory[order](2,2*n+1) ; end if ; end proc:
    A165781 := proc(n) (2^A002326(n)-1)/(2*n+1) ; end proc:
    read("transforms") ; A165783 := proc(n) A002326(n-1)+wt(A165781(n-1) ) ; end proc:
    seq(A165783(n),n=1..80) ; # R. J. Mathar, Nov 26 2009
  • Mathematica
    Table[(b = MultiplicativeOrder[2, 2 n - 1]) + Plus @@ IntegerDigits[(2^b - 1)/(2 n - 1), 2], {n, 1, 70}] (* Ivan Neretin, May 09 2015 *)
  • PARI
    hamming(n)=my(v=binary(n));sum(i=1,#v,v[i])
    a(n)=my(x=2*n+1,m=znorder(Mod(2,x)));m+hamming((1<
    				

Formula

a(n) = L + digitsum((2^L -1)/(2*n-1)). Digitsum(z)in base 2. [Ctibor O. Zizka, Nov 24 2009]

Extensions

Program and extension by Charles R Greathouse IV, Nov 24 2009
Definition corrected and comments merged by R. J. Mathar, Nov 26 2009