This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165809 #26 Sep 08 2022 08:45:48 %S A165809 1083,8124,26703,62400,120795,207468,327999,487968,692955,948540, %T A165809 1260303,1633824,2074683,2588460,3180735,3857088,4623099,5484348, %U A165809 6446415,7514880,8695323,9993324,11414463,12964320,14648475,16472508 %N A165809 a(n) = 3*n*(310*n^2 + 63*n - 12). %C A165809 Old name was: Related to A165808; this sequence is that of rational integer coefficients of sqrt(-1) in the quotients f(x+k*f(x))/f(x) where f(x) = x^3 + 2x +11 and x = 2 +3i. %H A165809 G. C. Greubel, <a href="/A165809/b165809.txt">Table of n, a(n) for n = 1..5000</a> %H A165809 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A165809 From _R. J. Mathar_, Sep 30 2009: (Start) %F A165809 G.f.: 3*x*(361 + 1264*x + 235*x^2)/(1-x)^4. %F A165809 a(n) = 3*n*(310*n^2 + 63*n - 12). (End) %F A165809 From _G. C. Greubel_, Apr 09 2016: (Start) %F A165809 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). %F A165809 E.g.f.: 3*x*(361 + 993*x + 310*x^2)*exp(x). (End) %p A165809 seq(3*n*(310*n^2 + 63*n - 12), n=1..35); # _G. C. Greubel_, Sep 02 2019 %t A165809 LinearRecurrence[{4, -6, 4, -1}, {1083, 8124, 26703, 62400}, 50] (* _G. C. Greubel_, Apr 09 2016 *) %t A165809 Table[3n(310n^2+63n-12),{n,30}] (* _Harvey P. Dale_, Jun 15 2021 *) %o A165809 (PARI) a(n)=3*n*(310*n^2+63*n-12) \\ _Charles R Greathouse IV_, Jul 07 2013 %o A165809 (Magma) [3*n*(310*n^2 + 63*n - 12): n in [1..35]]; // _G. C. Greubel_, Sep 02 2019 %o A165809 (Sage) [3*n*(310*n^2 + 63*n - 12) for n in (1..35)] # _G. C. Greubel_, Sep 02 2019 %o A165809 (GAP) List([1..35], n-> 3*n*(310*n^2 + 63*n - 12)); # _G. C. Greubel_, Sep 02 2019 %K A165809 nonn,easy %O A165809 1,1 %A A165809 _A.K. Devaraj_, Sep 29 2009 %E A165809 More terms from _R. J. Mathar_, Sep 30 2009