This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165816 #15 Nov 16 2017 02:57:04 %S A165816 41,137,257,313,353,457,761,1201,1217,1249,1321,2113,2273,2777,2833, %T A165816 2953,3001,3433,3593,3761,3881,4441,4481,4649,4793,4889,5273,5449, %U A165816 5569,5657,5849,6073,6529,7001,7321,7417,7561,7793,8521,8609,9049,9257,9281 %N A165816 Prime congruent numbers (A165815) that are not equal to 5 or 7 (mod 8). %C A165816 Heegner proved that every prime p with p = 5 or 7 (mod 8) is a congruent number. See A003628 for those primes. All primes in this sequence equal 1 (mod 8). %C A165816 Monsky proved that no prime of the form 8k+3 is a congruent number. - _Jonathan Sondow_, Nov 15 2017 %H A165816 T. D. Noe, <a href="/A165816/b165816.txt">Primes less than 10^7</a> %H A165816 Kurt Heegner, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002382962">Diophantische Analysis und Modulfunktionen</a>, Math. Zeitschrift 56 (1952), 227-253. %H A165816 P. Monsky, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN266833020_0204&DMDID=dmdlog9">Mock Heegner points and congruent numbers</a>, Math. Zeit., 204 (1990), 45-67. %H A165816 Kent E. Morrison, <a href="http://www.aimath.org/news/congruentnumbers/congruentnumbers.pdf">Congruent Numbers</a> %Y A165816 Cf. A003273 (congruent numbers), A165815 (prime congruent numbers). %K A165816 nonn %O A165816 1,1 %A A165816 _T. D. Noe_, Sep 28 2009