cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165879 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

This page as a plain text file.
%I A165879 #16 Sep 08 2022 08:45:48
%S A165879 1,17,272,4352,69632,1114112,17825792,285212672,4563402752,
%T A165879 73014444032,1168231104376,18691697667840,299067162650760,
%U A165879 4785074601857280,76561193620838400,1224979097791365120,19599665562389053440
%N A165879 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
%C A165879 The initial terms coincide with those of A170736, although the two sequences are eventually different.
%C A165879 Computed with MAGMA using commands similar to those used to compute A154638.
%H A165879 Alois P. Heinz, <a href="/A165879/b165879.txt">Table of n, a(n) for n = 0..300</a>
%H A165879 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (15,15,15,15,15,15,15,15,15,-120).
%F A165879 G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(120*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).
%p A165879 seq(coeff(series((1+t)*(1-t^10)/(1-16*t+135*t^10-120*t^11), t, n+1), t, n), n = 0 .. 30); # _G. C. Greubel_, Sep 24 2019
%t A165879 coxG[{10,120,-15}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Sep 02 2015 *)
%t A165879 CoefficientList[Series[(1+t)*(1-t^10)/(1-16*t+135*t^10-120*t^11), {t, 0, 30}], t] (* _G. C. Greubel_, Sep 24 2019 *)
%o A165879 (PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-16*t+135*t^10-120*t^11)) \\ _G. C. Greubel_, Sep 24 2019
%o A165879 (Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-16*t+135*t^10-120*t^11) )); // _G. C. Greubel_, Sep 24 2019
%o A165879 (Sage)
%o A165879 def A165879_list(prec):
%o A165879     P.<t> = PowerSeriesRing(ZZ, prec)
%o A165879     return P((1+t)*(1-t^10)/(1-16*t+135*t^10-120*t^11)).list()
%o A165879 A165879_list(30) # _G. C. Greubel_, Sep 24 2019
%o A165879 (GAP) a:=[17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104376];; for n in [11..30] do a[n]:=15*Sum([1..9], j-> a[n-j]) -120*a[n-10]; od; Concatenation([1], a); # _G. C. Greubel_, Sep 24 2019
%K A165879 nonn,easy
%O A165879 0,2
%A A165879 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009