A165921 Number of 6-elements orbits of S3 action on irreducible polynomials of degree n > 1 over GF(2).
0, 0, 0, 1, 1, 3, 4, 9, 15, 31, 53, 105, 189, 363, 672, 1285, 2407, 4599, 8704, 16641, 31713, 60787, 116390, 223696, 429975, 828495, 1597440, 3085465, 5964488, 11545611, 22368256, 43383477, 84212475, 163617801, 318140816, 619094385, 1205595657, 2349383715, 4581280972, 8939118925, 17452532040, 34093383807
Offset: 2
References
- J. E. Iglesias, Enumeration of polytypes MX and MX_2 through the use of the symmetry of the Zhadanov symbol, Acta Cryst. A 62 (3) (2006) 178-194, Table 1.
Links
- J.-F. Michon, P. Ravache, On different families of invariant irreducible polynomials over F_2[X], Finite fields & Applications, 16 (2010) 163-174.
Crossrefs
Programs
-
Mathematica
L[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#]*Binomial[n/#, k/#] &]; A165920[n_] := Sum[If[(n + k) ~Mod~ 3 == 1, L[n, k], 0], {k, 0, n}]/n; A001037[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[#]*2^(n/#) &]/n]; A000048[n_] := DivisorSum[n, Mod[#, 2]*(MoebiusMu[#]*2^(n/#)) &]/(2*n); A165921[n_] := Module[{an}, If[n <= 2, Return[0]]; an = A001037[n]; If[Mod[n, 2] == 0, an -= 3*A000048[n/2]]; If[Mod[n, 3] == 0, an -= 2*A165920[n/3]]; an /= 6; Return[an] ]; Table[A165921[n], {n, 2, 50}] (* Jean-François Alcover, Dec 02 2015, adapted from Joerg Arndt's PARI script *)
-
PARI
L(n, k)=sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) ); A165920(n)=sum(k=0, n, if( (n+k)%3==1, L(n, k), 0 ) ) / n; A001037(n)=if(n<1, n==0, sumdiv(n, d, moebius(d)*2^(n/d))/n); A000048(n)=sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n); A165921(n)= /* this sequence */ { my(an); if ( n<=2, return(0) ); an = A001037(n); if (n%2==0, an -= 3*A000048(n/2) ); if (n%3==0, an -= 2*A165920(n/3) ); an /= 6; return( an ); } /* Joerg Arndt, Jul 12 2012 */
-
PARI
A165921(n)=if(n>2,A001037(n)-if(!bittest(n,0),3*A000048(n\2))-if(n%3==0,2*A165920(n\3)))\6 \\ Based on Joerg Arndt's code from Jul 12 2012. Take up-to-date code for other sequences from the respective record. - M. F. Hasler, Sep 27 2018
Formula
(see PARI code)
a(p) = (2^(p-1)-1)/3p = A096060(n) for all primes p = prime(n) >= 5, n >= 3: A165921 o A000040 = A096060 on the domain [3..oo) of that sequence. - M. F. Hasler, Sep 27 2018
Extensions
Incorrect formula removed and more terms added by Joerg Arndt, Jul 12 2012
Comments