A165962 Number of circular permutations of length n without modular 3-sequences.
1, 5, 18, 95, 600, 4307, 35168, 321609, 3257109, 36199762, 438126986, 5736774126, 80808984725, 1218563180295, 19587031966352, 334329804347219, 6039535339644630, 115118210694558105, 2308967760171049528, 48613722701436777455, 1072008447320752890459
Offset: 3
Keywords
Examples
For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
References
- Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - N. J. A. Sloane, Sep 15 2012
Links
- Max Alekseyev, Table of n, a(n) for n = 3..100
Crossrefs
Programs
-
Mathematica
f[i_,n_,k_]:=If[i==0&&k==0,1,If[i==n&&n==k,1,Binomial[k-1,k-i]*Binomial[n-k-1,k-i-1]+2*Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i-1]+Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i]]]; w1[i_,n_,k_]:=If[n-2k+i<0,0,If[n-2k+i==0,1,(n-2k+i-1)!]]; a[n_,k_]:=Sum[f[i,n,k]*w1[i,n,k],{i,0,k}]; A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n,k],{k,1,n}]; Table[A165962[n],{n,3,23}] (* David Scambler, Sep 18 2012 *)
Formula
This sequence can be related to A165961 by the use of auxiliary sequences (and the auxiliary sequences can themselves be calculated by recurrence relations).
Comments