This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165979 #15 Sep 08 2022 08:45:48 %S A165979 1,27,702,18252,474552,12338352,320797152,8340725952,216858874752, %T A165979 5638330743552,146596599332001,3811511582622900,99099301147958475, %U A165979 2576581829840760300,66991127575699606500,1741769316964025575200 %N A165979 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I. %C A165979 The initial terms coincide with those of A170746, although the two sequences are eventually different. %C A165979 Computed with MAGMA using commands similar to those used to compute A154638. %H A165979 G. C. Greubel, <a href="/A165979/b165979.txt">Table of n, a(n) for n = 0..500</a> %H A165979 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (25, 25, 25, 25, 25, 25, 25, 25, 25, -325). %F A165979 G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1). %F A165979 G.f.: (1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11). - _G. C. Greubel_, Apr 26 2019 %t A165979 CoefficientList[Series[(1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11), {x, 0, 20}], x] (* _G. C. Greubel_, Apr 20 2016, modified Apr 26 2019 *) %t A165979 coxG[{10, 325, -25}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Apr 26 2019 *) %o A165979 (PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11)) \\ _G. C. Greubel_, Apr 26 2019 %o A165979 (Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11) )); // _G. C. Greubel_, Apr 26 2019 %o A165979 (Sage) ((1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11)).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 26 2019 %K A165979 nonn %O A165979 0,2 %A A165979 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009