This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165984 #20 Oct 05 2017 16:00:00 %S A165984 1,1,36,3654,766480,275234400,151111164204,117774526188844, %T A165984 123672890985095232,168324948170849366820,288216356245328994082600, %U A165984 606320062786763763996747618,1537230010624231669678572481296,4622745700243196227504110670860680 %N A165984 Number of ways to put n indistinguishable balls into n^3 distinguishable boxes. %C A165984 See A165817 for the case n indistinguishable balls into 2*n distinguishable boxes. %C A165984 See A054688 for the case n indistinguishable balls into n^2 distinguishable boxes. %C A165984 a(n) is the number of (weak) compositions of n into n^3 parts. - _Joerg Arndt_, Oct 04 2017 %F A165984 a(n) = binomial(n^3+n-1, n). %F A165984 Let denote P(n) = the number of integer partitions of n, %F A165984 p(i) = the number of parts of the i-th partition of n, %F A165984 d(i) = the number of different parts of the i-th partition of n, %F A165984 m(i,j) = multiplicity of the j-th part of the i-th partition of n. %F A165984 Then one has: %F A165984 a(n) = Sum_{i=1..P(n)} (n^3)!/((n^3-p(i))!*(Product_{j=1..d(i)} m(i,j)!)). %F A165984 a(n) = [x^n] 1/(1 - x)^(n^3). - _Ilya Gutkovskiy_, Oct 03 2017 %e A165984 For n = 2 the a(2) = 36 solutions are %e A165984 [0, 0, 0, 0, 0, 0, 0, 2] %e A165984 [0, 0, 0, 0, 0, 0, 1, 1] %e A165984 [0, 0, 0, 0, 0, 0, 2, 0] %e A165984 [0, 0, 0, 0, 0, 1, 0, 1] %e A165984 [0, 0, 0, 0, 0, 1, 1, 0] %e A165984 [0, 0, 0, 0, 0, 2, 0, 0] %e A165984 [0, 0, 0, 0, 1, 0, 0, 1] %e A165984 [0, 0, 0, 0, 1, 0, 1, 0] %e A165984 [0, 0, 0, 0, 1, 1, 0, 0] %e A165984 [0, 0, 0, 0, 2, 0, 0, 0] %e A165984 [0, 0, 0, 1, 0, 0, 0, 1] %e A165984 [0, 0, 0, 1, 0, 0, 1, 0] %e A165984 [0, 0, 0, 1, 0, 1, 0, 0] %e A165984 [0, 0, 0, 1, 1, 0, 0, 0] %e A165984 [0, 0, 0, 2, 0, 0, 0, 0] %e A165984 [0, 0, 1, 0, 0, 0, 0, 1] %e A165984 [0, 0, 1, 0, 0, 0, 1, 0] %e A165984 [0, 0, 1, 0, 0, 1, 0, 0] %e A165984 [0, 0, 1, 0, 1, 0, 0, 0] %e A165984 [0, 0, 1, 1, 0, 0, 0, 0] %e A165984 [0, 0, 2, 0, 0, 0, 0, 0] %e A165984 [0, 1, 0, 0, 0, 0, 0, 1] %e A165984 [0, 1, 0, 0, 0, 0, 1, 0] %e A165984 [0, 1, 0, 0, 0, 1, 0, 0] %e A165984 [0, 1, 0, 0, 1, 0, 0, 0] %e A165984 [0, 1, 0, 1, 0, 0, 0, 0] %e A165984 [0, 1, 1, 0, 0, 0, 0, 0] %e A165984 [0, 2, 0, 0, 0, 0, 0, 0] %e A165984 [1, 0, 0, 0, 0, 0, 0, 1] %e A165984 [1, 0, 0, 0, 0, 0, 1, 0] %e A165984 [1, 0, 0, 0, 0, 1, 0, 0] %e A165984 [1, 0, 0, 0, 1, 0, 0, 0] %e A165984 [1, 0, 0, 1, 0, 0, 0, 0] %e A165984 [1, 0, 1, 0, 0, 0, 0, 0] %e A165984 [1, 1, 0, 0, 0, 0, 0, 0] %e A165984 [2, 0, 0, 0, 0, 0, 0, 0] %p A165984 a:= n-> binomial(n^3+n-1, n): seq(a(n), n=0..16); %t A165984 Table[Binomial[n^3 + n - 1, n], {n, 0, 13}] (* _Michael De Vlieger_, Oct 05 2017 *) %o A165984 (PARI) a(n) = binomial(n^3+n-1, n); \\ _Altug Alkan_, Oct 03 2017 %Y A165984 Cf. A001700, A054688, A060690, A165817. %K A165984 nonn %O A165984 0,3 %A A165984 _Thomas Wieder_, Oct 03 2009