cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166065 Triangle, read by rows, given by [0,1,1,0,0,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 0, 4, 2, 2, 0, 8, 4, 2, 2, 0, 16, 8, 4, 2, 2, 0, 32, 16, 8, 4, 2, 2, 0, 64, 32, 16, 8, 4, 2, 2, 0, 128, 64, 32, 16, 8, 4, 2, 2, 0, 256, 128, 64, 32, 16, 8, 4, 2, 2, 0, 512, 256, 128, 64, 32, 16, 8, 4, 2, 2, 0, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 2, 0, 2048, 1024
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2009

Keywords

Examples

			Triangle begins :
1,
0,2,
0,2,2,
0,4,2,2,
0,8,4,2,2,
0,16,8,4,2,2,
0,32,16,8,4,2,2,
0,64,32,16,8,4,2,2,
0,128,64,32,16,8,4,2,2,
0,256,128,64,32,16,8,4,2,2,
0,512,256,128,64,32,16,8,4,2,2,
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A084247(n), A000007(n), A000079(n), A001787(n+1), A166060(n), A165665(n), A083585(n) for x= -1, 0, 1, 2, 3, 4, 5 respectively. Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A040000(n), A000079(n), A095121(n), A047851(n), A047853(n), A047855(n) for x = 0, 1, 2, 3, 4, 5 respectively.
G.f.: (1-2*x+x*y)/((-1+2*x)*(x*y-1)). - R. J. Mathar, Aug 11 2015