cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166075 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

This page as a plain text file.
%I A166075 #16 Sep 08 2022 08:45:48
%S A166075 1,31,930,27900,837000,25110000,753300000,22599000000,677970000000,
%T A166075 20339100000000,610172999999535,18305189999972100,549155699998744965,
%U A166075 16474670999949807900,494240129998118005500,14827203899932253220000
%N A166075 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
%C A166075 The initial terms coincide with those of A170750, although the two sequences are eventually different.
%C A166075 Computed with MAGMA using commands similar to those used to compute A154638.
%H A166075 G. C. Greubel, <a href="/A166075/b166075.txt">Table of n, a(n) for n = 0..500</a>
%H A166075 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (29,29,29,29,29,29,29,29,29,-435).
%F A166075 G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(435*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
%p A166075 seq(coeff(series((1+t)*(1-t^10)/(1-30*t+464*t^10-435*t^11), t, n+1), t, n), n = 0..30); # _G. C. Greubel_, Dec 05 2019
%t A166075 CoefficientList[Series[(1+t)*(1-t^10)/(1-30*t+464*t^10-435*t^11), {t,0,30}], t] (* _G. C. Greubel_, Apr 24 2016 *)
%o A166075 (PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-30*t+464*t^10-435*t^11)) \\ _G. C. Greubel_, Dec 05 2019
%o A166075 (Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-30*t+464*t^10-435*t^11) )); // _G. C. Greubel_, Dec 05 2019
%o A166075 (Sage)
%o A166075 def A166075_list(prec):
%o A166075     P.<t> = PowerSeriesRing(ZZ, prec)
%o A166075     return P((1+t)*(1-t^10)/(1-30*t+464*t^10-435*t^11)).list()
%o A166075 A166075_list(30) # _G. C. Greubel_, Dec 05 2019
%o A166075 (GAP) a:=[31, 930, 27900, 837000, 25110000, 753300000, 22599000000, 677970000000, 20339100000000, 610172999999535];; for n in [11..30] do a[n]:=29*Sum([1..9], j-> a[n-j]) - 435*a[n-10]; od; Concatenation([1], a); # _G. C. Greubel_, Dec 05 2019
%K A166075 nonn
%O A166075 0,2
%A A166075 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009