cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166107 A sequence related to the Madhava-Gregory-Leibniz formula for Pi.

Original entry on oeis.org

2, -10, 46, -334, 982, -10942, 140986, -425730, 7201374, -137366646, 410787198, -9473047614, 236302407090, -710245778490, 20563663645710, -638377099140510, 1912749274005030, -67020067316087550, 2477305680740159850
Offset: 0

Views

Author

Johannes W. Meijer, Oct 06 2009, Feb 26 2013, Mar 02 2013

Keywords

Comments

The EG1 matrix is defined in A162005. The first column of this matrix leads to the function PLS(z) = sum(2*eta(2*m-1)*z^(2*m-2), m=1..infinity) = 2*log(2) - Psi(z) - Psi(-z) + Psi(z/2) + Psi(-z/2). The values of this function for z=n+1/2 are related to Pi in a curious way.
Gauss's digamma theorem leads to PLS(z=n+1/2) = (-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1). Now we define PLS(z=n+1/2) = a(n)/p(n) with a(n) the sequence given above and for p(n) we choose the esthetically nice p(n) = (2*n-1)!!/(floor((n-2)/3)*2+1)!!, n=>0. For even values of n the limit(a(2*n)/p(2*n), n=infinity) = Pi and for odd values of n the limit(a(2*n+1)/p(2*n+1), n=infinity) = - Pi. We observe that the a(n)/p(n) formulas resemble the partial sums of the Madhava-Gregory-Leibniz series for Pi = 4*(1-1/3+1/5-1/7+ ...), see the examples. The 'extra term' that appears in the a(n)/p(n) formulas, i.e., 2/(2*n+1), speeds up the convergence of abs(a(n)/p(n)) significantly. The first appearance of a digit in the decimal expansion of Pi occurs here for n: 1, 3, 9, 30, 74, 261, 876, 3056, .., cf. A126809. [Comment modified by the author, Oct 09 2009]

Examples

			The first few values of a(n)/p(n) are: a(0)/p(0) = 2/1; a(1)/p(1) = - 4*(1) + 2/3 = -10/3; a(2)/p(2) = 4*(1-1/3) + 2/5 = 46/15; a(3)/p(3) = - 4*(1-1/3+1/5) + 2/7 = - 334/105; a(4)/p(4)= 4*(1-1/3+1/5-1/7) + 2/9 = 982/315; a(5)/p(5) = - 4*(1-1/3+1/5-1/7+1/9) + 2/11 = -10942/3465; a(6)/p(6) = 4*(1-1/3+1/5-1/7+1/9-1/11) + 2/13 = 140986/45045; a(7)/p(7) = - 4*(1-1/3+1/5-1/7+1/9-1/11+1/13) + 2/15 = - 425730/135135.
		

Crossrefs

Programs

  • Maple
    A166107 := n -> A220747 (n)*((-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)): A130823 := n -> floor((n-1)/3)*2+1: A220747 := n -> doublefactorial(2*n+1) / doublefactorial(A130823(n)): seq(A166107(n), n=0..20);

Formula

a(n) = p(n)*(-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1) with
p(n) = doublefactorial(2*n+1)/doublefactorial(floor((n-1)/3)*2+1) = A220747(n)
PLS(z) = 2*log(2) - Psi(z) - Psi(-z) + Psi(z/2) + Psi(-z/2)
PLS(z=n+1/2) = a(n)/p(n) = (-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)
PLS(z=2*n+5/2) - PLS(z=2*n+1/2) = 2/(4*n+5) - 4/(4*n+3) + 2/(4*n+1) which leads to:
Pi = 2 + 16 * sum(1/((4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).
PLS (z=2*n +7/2) - PLS(z=2*n+3/2) = 2/(4*n+7) - 4/(4*n+5) + 2/(4*n+3) which leads to:
Pi = 10/3 - 16*sum(1/((4*n+7)*(4*n+5)*(4*n+3)), n=0 .. infinity).
The combination of these two formulas leads to:
Pi = 8/3 + 48* sum(1/((4*n+7)*(4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).