A166107 A sequence related to the Madhava-Gregory-Leibniz formula for Pi.
2, -10, 46, -334, 982, -10942, 140986, -425730, 7201374, -137366646, 410787198, -9473047614, 236302407090, -710245778490, 20563663645710, -638377099140510, 1912749274005030, -67020067316087550, 2477305680740159850
Offset: 0
Examples
The first few values of a(n)/p(n) are: a(0)/p(0) = 2/1; a(1)/p(1) = - 4*(1) + 2/3 = -10/3; a(2)/p(2) = 4*(1-1/3) + 2/5 = 46/15; a(3)/p(3) = - 4*(1-1/3+1/5) + 2/7 = - 334/105; a(4)/p(4)= 4*(1-1/3+1/5-1/7) + 2/9 = 982/315; a(5)/p(5) = - 4*(1-1/3+1/5-1/7+1/9) + 2/11 = -10942/3465; a(6)/p(6) = 4*(1-1/3+1/5-1/7+1/9-1/11) + 2/13 = 140986/45045; a(7)/p(7) = - 4*(1-1/3+1/5-1/7+1/9-1/11+1/13) + 2/15 = - 425730/135135.
Links
- Frits Beukers, A rational approach to Pi, Nieuw Archief voor de Wiskunde, December 2000, pp. 372-379.
- Peter Borwein, The amazing number Pi, Nieuw Archief voor de Wiskunde, September 2000, pp. 254-258.
- Johannes W. Meijer, A modified Madhava-Gregory-Leibniz formula for Pi, Mar 02 2013.
- Pacific Institute for the Mathematical Sciences, Pi in the Sky magazine, 2000-2013.
- Wislawa Szymborska, The admirable number Pi, Miracle Fair, 2002.
- Eric. W. Weisstein, Gauss's Digamma Theorem., from Wolfram MathWorld.
- Wikipedia, Madhava of Sangamagrama.
Crossrefs
Programs
Formula
a(n) = p(n)*(-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1) with
p(n) = doublefactorial(2*n+1)/doublefactorial(floor((n-1)/3)*2+1) = A220747(n)
PLS(z) = 2*log(2) - Psi(z) - Psi(-z) + Psi(z/2) + Psi(-z/2)
PLS(z=n+1/2) = a(n)/p(n) = (-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)
PLS(z=2*n+5/2) - PLS(z=2*n+1/2) = 2/(4*n+5) - 4/(4*n+3) + 2/(4*n+1) which leads to:
Pi = 2 + 16 * sum(1/((4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).
PLS (z=2*n +7/2) - PLS(z=2*n+3/2) = 2/(4*n+7) - 4/(4*n+5) + 2/(4*n+3) which leads to:
Pi = 10/3 - 16*sum(1/((4*n+7)*(4*n+5)*(4*n+3)), n=0 .. infinity).
The combination of these two formulas leads to:
Pi = 8/3 + 48* sum(1/((4*n+7)*(4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).
Comments