A166121 Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. dsf(791621579) = 776537851 and dsf(776537851) = 19300779, ..., dsf(824599) = 791621579, ... in this way these 11 numbers make a loop for the function dsf.
791621579, 776537851, 19300779, 776488094, 422669176, 388384265, 50381743, 17604196, 388337603, 34424740, 824599, 791621579, 776537851, 19300779, 776488094, 422669176, 388384265, 50381743, 17604196, 388337603, 34424740
Offset: 1
Examples
This is an reiterative process that starts with 791621579.
Links
- Ryohei Miyadera, Curious Properties of an Iterative Process,Mathsource, Wolfram Library Archive.
- Shoei Takahashi, Unchone Lee, Hikaru Manabe, Aoi Murakami, Daisuke Minematsu, Kou Omori, and Ryohei Miyadera, Curious Properties of Iterative Sequences, arXiv:2308.06691 [math.GM], 2023.
Programs
-
Mathematica
dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf,791621579,22]
Formula
Let dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the digits of an integer n. By applying the function dsf to 791621579 we can get a loop of length 11.
Comments