This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166128 #19 Mar 11 2020 17:35:17 %S A166128 1,32,992,30752,953312,29552672,916132832,28400117792,880403651552, %T A166128 27292513198112,846067909140976,26228105183354880,813071260683525120, %U A166128 25205209081174517760,781361481515952460800,24222205926980341002240 %N A166128 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I. %C A166128 The initial terms coincide with those of A170751, although the two sequences are eventually different. %C A166128 Computed with MAGMA using commands similar to those used to compute A154638. %H A166128 G. C. Greubel, <a href="/A166128/b166128.txt">Table of n, a(n) for n = 0..500</a> %H A166128 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (30, 30, 30, 30, 30, 30, 30, 30, 30, -465). %F A166128 G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^10 - 30*t^9 - 30*t^8 - 30*t^7 - 30*t^6 - 30*t^5 - 30*t^4 - 30*t^3 - 30*t^2 - 30*t + 1). %p A166128 seq(coeff(series((1+t)*(1-t^10)/(1 -31*t +495*t^10 -465*t^11), t, n+1), t, n), n = 0..30); # _G. C. Greubel_, Mar 11 2020 %t A166128 CoefficientList[Series[(1+t)*(1-t^10)/(1 -31*t +495*t^10 -465*t^11), {t, 0, 30}], t] (* _G. C. Greubel_, Apr 26 2016 *) %t A166128 coxG[{465, 10, -30}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Mar 11 2020 *) %o A166128 (Sage) %o A166128 def A166128_list(prec): %o A166128 P.<t> = PowerSeriesRing(ZZ, prec) %o A166128 return P( (1+t)*(1-t^10)/(1 -31*t +495*t^10 -465*t^11) ).list() A166128_list(30) # _G. C. Greubel_, Mar 11 2020 %K A166128 nonn %O A166128 0,2 %A A166128 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009