This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166129 #19 Sep 12 2024 17:49:35 %S A166129 1,33,1056,33792,1081344,34603008,1107296256,35433480192, %T A166129 1133871366144,36283883716608,1161084278930928,37154696925772800, %U A166129 1188950301624189456,38046409651956777984,1217485108862063788032,38959523483568341778432 %N A166129 Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I. %C A166129 The initial terms coincide with those of A170752, although the two sequences are eventually different. %C A166129 Computed with MAGMA using commands similar to those used to compute A154638. %H A166129 G. C. Greubel, <a href="/A166129/b166129.txt">Table of n, a(n) for n = 0..500</a> %H A166129 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (31, 31, 31, 31, 31, 31, 31, 31, 31, -496). %F A166129 G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^10 - 31*t^9 - 31*t^8 - 31*t^7 - 31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1). %p A166129 seq(coeff(series((1+t)*(1-t^10)/(1-32*t+527*t^10-496*t^11), t, n+1), t, n), n = 0..30); # _G. C. Greubel_, Mar 11 2020 %t A166129 CoefficientList[Series[(1+t)*(1-t^10)/(1 -32*t +527*t^10 -496*t^11), {t, 0, 30}], t] (* _G. C. Greubel_, Apr 26 2016 *) %t A166129 coxG[{496, 10, -31}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Mar 11 2020 *) %o A166129 (Sage) %o A166129 def A166129_list(prec): %o A166129 P.<t> = PowerSeriesRing(ZZ, prec) %o A166129 return P( (1+t)*(1-t^10)/(1-32*t+527*t^10-496*t^11) ).list() %o A166129 A166129_list(30) # _G. C. Greubel_, Mar 11 2020 %K A166129 nonn %O A166129 0,2 %A A166129 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009