cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166131 a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.

This page as a plain text file.
%I A166131 #12 Feb 10 2020 18:24:36
%S A166131 1,4,9,15,20,46,39,43,52,76,64,83,118,92,166,154,128,146,173,236,228,
%T A166131 190,283,215,434,240,246,395,607,377,357,536,349,492,519,444,722,430,
%U A166131 635,814,598,512,541,562,700,821,633,708,893,729,738
%N A166131 a(j) = minimum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.
%H A166131 Christopher Hunt Gribble, <a href="/A166131/b166131.txt">Table of n, a(n) for n = 1..1973</a>.
%e A166131 The table below shows for each value of a(j) the corresponding values of prime(a(j)) and (Sum of the quadratic non-residues of prime(a(j)) - Sum of the quadratic residues of prime(a(j))) / prime(a(j))
%e A166131 .
%e A166131    j      a(j)    prime(a(j))   (SQN-SQR)/prime(a(j))
%e A166131   --      ----    -----------   ---------------------
%e A166131    1         1          2          0
%e A166131    2         4          7          1
%e A166131    3         9         23          3
%e A166131    4        15         47          5
%e A166131    5        20         71          7
%e A166131    6        46        199          9
%e A166131    7        39        167         11
%e A166131    8        43        191         13
%e A166131    9        52        239         15
%e A166131   10        76        383         17
%e A166131   11        64        311         19
%e A166131   12        83        431         21
%e A166131   13       118        647         23
%e A166131   14        92        479         25
%e A166131   15       166        983         27
%e A166131   16       154        887         29
%e A166131   17       128        719         31
%e A166131   18       146        839         33
%e A166131   19       173       1031         35
%e A166131   20       236       1487         37
%e A166131   21       228       1439         39
%e A166131   22       190       1151         41
%e A166131   23       283       1847         43
%e A166131   24       215       1319         45
%e A166131   25       434       3023         47
%e A166131   26       240       1511         49
%e A166131   27       246       1559         51
%e A166131   28       395       2711         53
%e A166131   29       607       4463         55
%e A166131   30       377       2591         57
%e A166131   31       357       2399         59
%e A166131   32       536       3863         61
%e A166131   33       349       2351         63
%e A166131   34       492       3527         65
%e A166131   35       519       3719         67
%e A166131   36       444       3119         69
%e A166131   37       722       5471         71
%e A166131   38       430       2999         73
%e A166131   39       635       4703         75
%e A166131   40       814       6263         77
%e A166131   41       598       4391         79
%e A166131   42       512       3671         81
%e A166131   43       541       3911         83
%e A166131   44       562       4079         85
%e A166131   45       700       5279         87
%e A166131   46       821       6311         89
%e A166131   47       633       4679         91
%e A166131   48       708       5351         93
%e A166131   49       893       6959         95
%e A166131   50       729       5519         97
%e A166131   51       738       5591         99
%Y A166131 Cf. A165951, A165974, A004273.
%K A166131 nonn
%O A166131 1,2
%A A166131 _Christopher Hunt Gribble_, Oct 07 2009
%E A166131 Sequence corrected and comments added by _Christopher Hunt Gribble_, Oct 10 2009