A166134 a(n+1) is the smallest divisor of a(n)^2+1 that does not yet appear in the sequence, with a(1) = 1.
1, 2, 5, 13, 10, 101, 5101, 26, 677, 45833, 65, 2113, 446477, 130, 16901, 41, 29, 421, 17, 58, 673, 45293, 25, 313, 97, 941, 34057, 50, 61, 1861, 1229, 773, 59753, 89, 34, 1157, 82, 269, 194, 617, 38069, 55740337, 145, 10513, 11052317, 12215371106849
Offset: 1
Keywords
Examples
After a(4)=13, the divisors of 13^2+1=170 are 1,2, 5, 10, 17, 34, 85, 170. 1, 2, and 5 have already occurred, so a(5) = 10.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Nest[Append[#, Min[Complement[Divisors[#[[-1]]^2 + 1], #]]] &, {1}, 45] (* Ivan Neretin, Sep 03 2015 *)
-
PARI
invec(v,x,n)=for(i=1,n,if(v[i]==x,return(1)));0 bl(n)={local(v,d,ds); v=vector(n,i,1); for(i=2,n, ds=divisors(v[i-1]^2+1); for(k=2,#ds,d=ds[k];if(!invec(v,d,i-1),v[i]=d;break))); v}
Comments