cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166228 Alternating sum of large Schroeder numbers.

Original entry on oeis.org

1, 1, 5, 17, 73, 321, 1485, 7073, 34513, 171585, 866133, 4427313, 22870425, 119208321, 626178717, 3311424321, 17615732385, 94202293633, 506116560293, 2730607756881, 14788011564009, 80361643637953, 438070231780973
Offset: 0

Views

Author

Paul Barry, Oct 09 2009

Keywords

Comments

Hankel transform is A166231. Binomial transform is A166229.

Programs

  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

G.f.: (1-x-sqrt(1-6x+x^2))/(2x(1+x));
a(n) = Sum{k=0..n} (-1)^k*A006318(n-k) = Sum_{k=0..n} (-1)^(n-k)*A006318(k).
Conjecture: (n+1)*a(n) +(4-5n)*a(n-1) +(1-5n)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012