cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166252 Primes which are not the smallest or largest prime in an interval of the form (2*prime(k),2*prime(k+1)).

This page as a plain text file.
%I A166252 #19 Jun 01 2023 22:32:40
%S A166252 71,101,109,151,181,191,229,233,239,241,269,283,311,349,373,409,419,
%T A166252 433,439,491,571,593,599,601,607,643,647,653,659,683,727,823,827,857,
%U A166252 941,947,991,1021,1031,1033,1051,1061,1063,1091,1103,1301,1373,1427,1429
%N A166252 Primes which are not the smallest or largest prime in an interval of the form (2*prime(k),2*prime(k+1)).
%C A166252 Called "central primes" in A166251, not to be confused with the central polygonal primes A055469.
%C A166252 The primes tabulated in intervals (2*prime(k),2*prime(k+1)) are
%C A166252 5, k=1
%C A166252 7, k=2
%C A166252 11,13, k=3
%C A166252 17,19, k=4
%C A166252 23,    k=5
%C A166252 29,31, k=6
%C A166252 37,    k=7
%C A166252 41,43, k=8
%C A166252 47,53, k=9
%C A166252 59,61, k=10
%C A166252 67,71,73,  k=11
%C A166252 79,        k=12
%C A166252 83,     k=13
%C A166252 89,     k=14
%C A166252 97,101,103, k=15
%C A166252 and only rows with at least 3 primes contribute primes to the current sequence.
%C A166252 For n >= 2, these are numbers of A164368 which are in A194598. - Vladimir Shevelev, Apr 27 2012
%H A166252 T. D. Noe, <a href="/A166252/b166252.txt">Table of n, a(n) for n = 1..1000</a>
%e A166252 Since 2*31 < 71 < 2*37 and the interval (62, 74) contains prime 67 < 71 and prime 73 > 71, then 71 is in the sequence.
%t A166252 n = 0; t = {}; While[Length[t] < 100, n++; ps = Select[Range[2*Prime[n], 2*Prime[n+1]], PrimeQ]; If[Length[ps] > 2, t = Join[t, Rest[Most[ps]]]]]; t (* _T. D. Noe_, Apr 30 2012 *)
%Y A166252 Cf. A166307, A182365, A166251, A164368, A104272, A080359, A164333, A164288, A164294, A164554, A194598.
%K A166252 nonn
%O A166252 1,1
%A A166252 _Vladimir Shevelev_, Oct 10 2009, Oct 14 2009