This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166263 #11 Feb 10 2020 18:24:44 %S A166263 348511,38,155,389,778,1296,1828,2321,3683,3935,4078,6184,8783,9013, %T A166263 9880,15182,12449,19828,18884,14593,22316,25738,26064,26670,31953, %U A166263 33332,45025,35788,37881,50299,39562,49598,77850,56777,53024,70443,71992 %N A166263 a(j) = maximum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j. %C A166263 a(1) appears to increase indefinitely, so the static sequence starts from a(2). %C A166263 The value of a(1) is the index of the largest prime p < 5*10^6 for which Sum of the quadratic non-residues of p = Sum of the quadratic residues of p. %C A166263 The table below shows for each value of a(j) the corresponding values of p(a(j)) and (Sum of the quadratic non-residues of p(a(j)) - Sum of the quadratic residues of p(a(j))) / p(a(j)): %C A166263 . %C A166263 j a(j) prime(a(j)) (SQN-SQR)/prime(a(j)) %C A166263 -- ------ ----------- --------------------- %C A166263 1 348511 4999961 0 %C A166263 2 38 163 1 %C A166263 3 155 907 3 %C A166263 4 389 2683 5 %C A166263 5 778 5923 7 %C A166263 6 1296 10627 9 %C A166263 7 1828 15667 11 %C A166263 8 2321 20563 13 %C A166263 9 3683 34483 15 %C A166263 10 3935 37123 17 %C A166263 11 4078 38707 19 %C A166263 12 6184 61483 21 %C A166263 13 8783 90787 23 %C A166263 14 9013 93307 25 %C A166263 15 9880 103387 27 %C A166263 16 15182 166147 29 %C A166263 17 12449 133387 31 %C A166263 18 19828 222643 33 %C A166263 19 18884 210907 35 %C A166263 20 14593 158923 37 %C A166263 21 22316 253507 39 %C A166263 22 25738 296587 41 %C A166263 23 26064 300787 43 %C A166263 24 26670 308323 45 %C A166263 25 31953 375523 47 %C A166263 26 33332 393187 49 %C A166263 27 45025 546067 51 %C A166263 28 35788 425107 53 %C A166263 29 37881 452083 55 %C A166263 30 50299 615883 57 %C A166263 31 39562 474307 59 %C A166263 32 49598 606643 61 %C A166263 33 77850 991027 63 %C A166263 34 56777 703123 65 %C A166263 35 53024 652723 67 %C A166263 36 70443 888427 69 %C A166263 37 71992 909547 71 %C A166263 38 70328 886867 73 %C A166263 39 72479 916507 75 %H A166263 Christopher Hunt Gribble, <a href="/A166263/b166263.txt">Table of n, a(n) for n = 1..1973</a>. %Y A166263 Cf. A165951, A165974, A004273. %K A166263 nonn %O A166263 1,1 %A A166263 _Christopher Hunt Gribble_, Oct 10 2009