cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166263 a(j) = maximum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.

This page as a plain text file.
%I A166263 #11 Feb 10 2020 18:24:44
%S A166263 348511,38,155,389,778,1296,1828,2321,3683,3935,4078,6184,8783,9013,
%T A166263 9880,15182,12449,19828,18884,14593,22316,25738,26064,26670,31953,
%U A166263 33332,45025,35788,37881,50299,39562,49598,77850,56777,53024,70443,71992
%N A166263 a(j) = maximum value of n for each distinct increasing value of (Sum of the quadratic non-residues of prime(n) - Sum of the quadratic residues of prime(n)) / prime(n) for each j.
%C A166263 a(1) appears to increase indefinitely, so the static sequence starts from a(2).
%C A166263 The value of a(1) is the index of the largest prime p < 5*10^6 for which Sum of the quadratic non-residues of p = Sum of the quadratic residues of p.
%C A166263 The table below shows for each value of a(j) the corresponding values of p(a(j)) and (Sum of the quadratic non-residues of p(a(j)) - Sum of the quadratic residues of p(a(j))) / p(a(j)):
%C A166263 .
%C A166263    j      a(j)    prime(a(j))   (SQN-SQR)/prime(a(j))
%C A166263   --    ------    -----------   ---------------------
%C A166263    1    348511    4999961          0
%C A166263    2        38        163          1
%C A166263    3       155        907          3
%C A166263    4       389       2683          5
%C A166263    5       778       5923          7
%C A166263    6      1296      10627          9
%C A166263    7      1828      15667         11
%C A166263    8      2321      20563         13
%C A166263    9      3683      34483         15
%C A166263   10      3935      37123         17
%C A166263   11      4078      38707         19
%C A166263   12      6184      61483         21
%C A166263   13      8783      90787         23
%C A166263   14      9013      93307         25
%C A166263   15      9880     103387         27
%C A166263   16     15182     166147         29
%C A166263   17     12449     133387         31
%C A166263   18     19828     222643         33
%C A166263   19     18884     210907         35
%C A166263   20     14593     158923         37
%C A166263   21     22316     253507         39
%C A166263   22     25738     296587         41
%C A166263   23     26064     300787         43
%C A166263   24     26670     308323         45
%C A166263   25     31953     375523         47
%C A166263   26     33332     393187         49
%C A166263   27     45025     546067         51
%C A166263   28     35788     425107         53
%C A166263   29     37881     452083         55
%C A166263   30     50299     615883         57
%C A166263   31     39562     474307         59
%C A166263   32     49598     606643         61
%C A166263   33     77850     991027         63
%C A166263   34     56777     703123         65
%C A166263   35     53024     652723         67
%C A166263   36     70443     888427         69
%C A166263   37     71992     909547         71
%C A166263   38     70328     886867         73
%C A166263   39     72479     916507         75
%H A166263 Christopher Hunt Gribble, <a href="/A166263/b166263.txt">Table of n, a(n) for n = 1..1973</a>.
%Y A166263 Cf. A165951, A165974, A004273.
%K A166263 nonn
%O A166263 1,1
%A A166263 _Christopher Hunt Gribble_, Oct 10 2009