cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166264 If the n-th prime is denoted by p(n) then a(j) = frequency with which each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) occurs.

This page as a plain text file.
%I A166264 #12 Feb 10 2020 18:25:15
%S A166264 174195,6,16,25,31,34,41,37,68,45,47,85,68,95,93,83,73,101,103,85,115,
%T A166264 109,106,154,107,132,159,114,163,179,128,132,216,164,120,209,150,119,
%U A166264 237,216,175,228,150,221,222,192,214,262,241,185,289,196,181,379,189
%N A166264 If the n-th prime is denoted by p(n) then a(j) = frequency with which each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) occurs.
%C A166264 The table below shows a(j) for each distinct value of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) for 1 <= n <= 348513, with p(348513) = 4999999 (< 5*10^6).
%C A166264 a(1) appears to increase indefinitely, so the static sequence starts at a(2).
%C A166264    j   (SQN-SQR)/p(n)    a(j)
%C A166264   --   --------------  ------
%C A166264    1          0        174195
%C A166264    2          1             6
%C A166264    3          3            16
%C A166264    4          5            25
%C A166264    5          7            31
%C A166264    6          9            34
%C A166264    7         11            41
%C A166264    8         13            37
%C A166264    9         15            68
%C A166264   10         17            45
%C A166264   11         19            47
%C A166264   12         21            85
%C A166264   13         23            68
%C A166264   14         25            95
%C A166264   15         27            93
%C A166264   16         29            83
%C A166264   17         31            73
%C A166264   18         33           101
%C A166264   19         35           103
%C A166264   20         37            85
%C A166264   21         39           115
%C A166264   22         41           109
%C A166264   23         43           106
%C A166264   24         45           154
%C A166264   25         47           107
%C A166264   26         49           132
%C A166264   27         51           159
%C A166264   28         53           114
%C A166264   29         55           163
%C A166264   30         57           179
%C A166264   31         59           128
%C A166264   32         61           132
%C A166264   33         63           216
%C A166264   34         65           164
%C A166264   35         67           120
%C A166264   36         69           209
%C A166264   37         71           150
%C A166264   38         73           119
%C A166264   39         75           237
%C A166264   40         77           216
%C A166264   41         79           175
%C A166264   42         81           228
%C A166264   43         83           150
%C A166264   44         85           221
%C A166264   45         87           222
%C A166264   46         89           192
%C A166264   47         91           214
%C A166264   48         93           262
%C A166264   49         95           241
%C A166264   50         97           185
%C A166264   51         99           289
%C A166264   52        101           196
%C A166264   53        103           181
%C A166264   54        105           379
%C A166264   55        107           189
%C A166264   56        109           209
%C A166264   57        111           314
%C A166264   58        113           239
%H A166264 Christopher Hunt Gribble, <a href="/A166264/b166264.txt">Table of n, a(n) for n = 1..1973</a>.
%Y A166264 Cf. A165951, A165974, A004273.
%K A166264 nonn
%O A166264 1,1
%A A166264 _Christopher Hunt Gribble_, Oct 10 2009