This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166280 #4 Apr 17 2022 21:07:57 %S A166280 1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,1,1,0,0,1,1,1,1,0,1,0,0, %T A166280 0,1,1,1,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,1,1,1,1,1,0,0,1,1,0,1,1,1,1,1, %U A166280 0,1,0,0,0,1,1,1,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,1,1,1 %N A166280 Stirling2 triangle mod 2, T(n,k) = A008277(n,k) mod 2. %e A166280 Triangle begins: %e A166280 1, %e A166280 1,1, %e A166280 1,1,1, %e A166280 1,1,0,1, %e A166280 1,1,1,0,1, %e A166280 1,1,0,1,1,1, %e A166280 1,1,1,0,0,1,1, %e A166280 1,1,0,1,0,0,0,1, %e A166280 1,1,1,0,1,0,0,0,1, %e A166280 1,1,0,1,1,1,0,0,1,1, %e A166280 1,1,1,0,0,1,1,0,1,1,1, %e A166280 1,1,0,1,0,0,0,1,1,1,0,1, %e A166280 1,1,1,0,1,0,0,0,0,1,1,0,1, %e A166280 ... %o A166280 (PARI) p = 2; s=14; S2T = matrix(s,s,n,k, if(k==1,1)); for(n=2,s,for(k=2,n, S2T[n,k]=k*S2T[n-1,k]+S2T[n-1,k-1])); %o A166280 S2TMP = matrix(s,s,n,k, S2T[n,k]%p); %o A166280 for(n=1,s,for(k=1,n,print1(S2TMP[n,k]," "));print()) %Y A166280 Cf. A008277, A047999 (Sierpinski's triangle, Pascal's triangle mod 2). %K A166280 easy,nonn,tabl %O A166280 0,1 %A A166280 _Gerald McGarvey_, Oct 10 2009