This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166282 #5 Jun 06 2016 23:43:34 %S A166282 1,-1,1,-1,0,1,1,-1,-1,1,-1,0,0,0,1,1,-1,0,0,-1,1,1,0,-1,0,-1,0,1,-1, %T A166282 1,1,-1,1,-1,-1,1,-1,0,0,0,0,0,0,0,1,1,-1,0,0,0,0,0,0,-1,1,1,0,-1,0,0, %U A166282 0,0,0,-1,0,1,-1,1,1,-1,0,0,0,0,1,-1,-1,1,1,0,0,0,-1,0,0,0,-1,0,0,0,1 %N A166282 Matrix inverse of Sierpinski's triangle (A047999, Pascal's triangle mod 2). %C A166282 In absolute values equal to A047999. - _M. F. Hasler_, Jun 06 2016 %e A166282 Triangle begins: %e A166282 1, %e A166282 -1, 1, %e A166282 -1, 0, 1, %e A166282 1,-1,-1, 1, %e A166282 -1, 0, 0, 0, 1, %e A166282 1,-1, 0, 0,-1, 1, %e A166282 1, 0,-1, 0,-1, 0, 1, %e A166282 -1, 1, 1,-1, 1,-1,-1, 1, %e A166282 -1, 0, 0, 0, 0, 0, 0, 0, 1, %e A166282 1,-1, 0, 0, 0, 0, 0, 0,-1, 1, %e A166282 1, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1, %e A166282 -1, 1, 1,-1, 0, 0, 0, 0, 1,-1,-1, 1, %e A166282 1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 1, %e A166282 ... %o A166282 (PARI) p=2; s=13; P=matpascal(s); PM=matrix(s+1,s+1,n,k,P[n,k]%p); IPM = 1/PM; %o A166282 for(n=1,s,for(k=1,n,print1(IPM[n,k],","));print()) %Y A166282 Cf. A007318, A047999. %K A166282 easy,sign,tabl %O A166282 0,1 %A A166282 _Gerald McGarvey_, Oct 10 2009