A166284 Number of Dyck paths with no UUU's and no DDD's of semilength n and having k UUDD's (0<=k<=floor(n/2); U=(1,1), D=(1,-1)).
1, 1, 1, 1, 2, 2, 4, 3, 1, 7, 7, 3, 13, 17, 6, 1, 26, 36, 16, 4, 52, 77, 45, 10, 1, 104, 173, 111, 30, 5, 212, 387, 268, 95, 15, 1, 438, 857, 666, 266, 50, 6, 910, 1911, 1641, 714, 175, 21, 1, 1903, 4287, 3975, 1940, 546, 77, 7, 4009, 9619, 9606, 5205, 1610, 294, 28, 1
Offset: 0
Examples
T(5,2)=3 because we have UDUUDDUUDD, UUDDUDUUDD, and UUDDUUDDUD. Triangle starts: 1; 1; 1,1; 2,2; 4,3,1; 7,7,3; 13,17,6,1; 26,36,16,4;
Links
- M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306. - _Emeric Deutsch_, Aug 23 2014
Programs
-
Maple
F := RootOf(G = 1+z*G+t*z^2*G+z^3*G^2, G): Fser := series(F, z = 0, 18): for n from 0 to 15 do P[n] := sort(coeff(Fser, z, n)) end do: for n from 0 to 14 do seq(coeff(P[n], t, j), j = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
Formula
G.f. G=G(t,z) satisfies G = 1 + zG + tz^2*G + z^3*G^2.
Comments