cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166292 Number of peaks at odd level in all Dyck paths of semilength n with no UUU's and no DDD's, (U=(1,1), D=(1,-1)). These Dyck paths are counted by the secondary structure numbers (A004148).

Original entry on oeis.org

0, 1, 2, 5, 12, 29, 72, 181, 460, 1178, 3030, 7815, 20188, 52193, 134992, 349205, 903398, 2337135, 6046310, 15642402, 40469824, 104708914, 270937964, 701129755, 1814581514, 4696886211, 12159165336, 31481922733, 81523933604, 211143257951
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2009

Keywords

Examples

			a(3)=5 because the paths (UD)(UD)(UD), (UD)UUDD, UUDD(UD), and UUDUDD have 3 + 1 + 1 + 0 peaks at odd level (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    g := ((1-z-z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^3: G := (z^2+3*z-2+(z^4+z^3-z^2-4*z+2)*g)/((1-z-z^2)*(1-z-z^2-2*z^3*g)): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 30);
  • Mathematica
    CoefficientList[Series[(x^2+3*x-2+(x^4+x^3-x^2-4*x+2)*((1-x-x^2-Sqrt[1-2*x-x^2-2*x^3+x^4])*1/2)/x^3)/((1-x-x^2)*(1-x-x^2-2*x^3*((1-x-x^2-Sqrt[1-2*x-x^2-2*x^3+x^4])*1/2)/x^3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

a(n) = Sum_{k=0..n} k*A166291(n,k).
G.f.: G=(z^2 + 3*z - 2 + (z^4 + z^3 - z^2 - 4*z + 2)*g(z))/((1 - z - z^2)*(1 - z - z^2 - 2*z^3*g(z))), where g=g(z) satisfies g = 1 + z*g + z^2*g + z^3*g^2.
a(n) ~ sqrt(55 + 123/sqrt(5)) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+5/2)). - Vaclav Kotesovec, Mar 20 2014
Equivalently, a(n) ~ phi^(2*n + 5) / (4 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
D-finite with recurrence -(n+3)*(12263959*n-453745718)*a(n) +(-12263959*n^2-1898630196*n-3269930920)*a(n-1) +2*(201299201*n^2-33603137*n-693679841)*a(n-2) +4*(-226348358*n^2+2057096353*n-415271997)*a(n-3) +(282398701*n^2-4452810911*n+4125507350)*a(n-4) +(46943591*n^2-3487699726*n+8812781352)*a(n-5) +4*(214523727*n^2-2147935054*n+5837738425)*a(n-6) +2*(-101430217*n^2+3147700949*n-14145800266)*a(n-7) -5*(76453537*n-336152052)*(n-7)*a(n-8) +(n-8)*(126836791*n-1033250150)*a(n-9)=0. - R. J. Mathar, Jul 26 2022