cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166300 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no UUDD's starting at level 0.

This page as a plain text file.
%I A166300 #53 May 06 2025 10:32:30
%S A166300 1,0,0,1,1,2,5,10,22,50,113,260,605,1418,3350,7967,19055,45810,110637,
%T A166300 268301,653066,1594980,3907395,9599326,23643751,58374972,144442170,
%U A166300 358136905,889671937,2214015802,5518884019,13778312440,34448765740
%N A166300 Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no UUDD's starting at level 0.
%C A166300 a(n) = A166299(n,0).
%C A166300 a(n) is the number of peakless Motzkin paths of length n with no (1,0)-steps at level 0. Example: a(5)=2 because, denoting  U=(1,1), H=(1,0), and D=(1,-1), we have UHHHD and UUHDD. - _Emeric Deutsch_, May 03 2011
%C A166300 From _Paul Barry_, Mar 31 2011: (Start)
%C A166300 The Hankel transform of a(n+3) is A188444(n+1).
%C A166300 a(n+3) gives the diagonal sums of the triangle A100754.
%C A166300 a(n+3) has g.f. 1/(1-x-x^2/(1-2x+3x^2/(1+2x+x^2/(1-2x-(1/3)x^2/(1-x-(2/3)x^2/(1-2x+(5/2)x^2/(1+2x+(3/2)x^2/(1-...)))))))) (continued fraction) where the coefficients of x^2 have denominators A188442 and numerators A188443. (End)
%C A166300 The Ca1 triangle sums of triangle A175136 lead to this sequence (n>=3). For the definitions of the Ca1 and other triangle sums see A180662. - _Johannes W. Meijer_, May 06 2011
%C A166300 a(n) is the number of closed Deutsch paths of n steps with all peaks at even height.  A Deutsch path is a lattice path of up-steps (1,1) and down-steps (1,-j), j>=1, starting at the origin that never goes below the x-axis, and it is closed if it ends on the x-axis. For example a(5) = 2 counts UUUU4, UU1U2, where  U denotes an up-step and a down-step is denoted by its length, and a(6) = 5 counts UUUU13, UUUU22, UUUU31, UU1U11, UU2UU2. - _David Callan_, Dec 08 2021
%H A166300 Vincenzo Librandi, <a href="/A166300/b166300.txt">Table of n, a(n) for n = 0..1000</a>
%H A166300 Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, <a href="http://jl.baril.u-bourgogne.fr/narayana.pdf">Generalized Narayana arrays, restricted Dyck paths, and related bijections</a>, Univ. Bourgogne (France, 2025). See p. 22.
%F A166300 G.f. = G(z)=2/(1 + z + z^2 + sqrt((1 + z + z^2)*(1 - 3*z + z^2))).
%F A166300 G.f.: 1 / (1 - x^3 / (1 - x / (1 - x / (1 - x^3 / (1 - x / (1 - x / ...)))))). - _Michael Somos_, May 12 2012
%F A166300 G.f. A(x) satisfies A(x) = 1 / (1 - x^3 / (1 - x / (1 - x *A(x)))). - _Michael Somos_, May 12 2012
%F A166300 Conjecture: (n+1)*a(n) +2*(-n+1)*a(n-1) +(-n+1)*a(n-2) +2*(-n+1)*a(n-3) +(n-3)*a(n-4)=0. - _R. J. Mathar_, Nov 24 2012
%F A166300 a(n) ~ (3+sqrt(5))^(n+2) * sqrt(7*sqrt(5)-15) / (2 * sqrt(Pi) * n^(3/2) * 2^(n+9/2)). - _Vaclav Kotesovec_, Feb 12 2014. Equivalently, a(n) ~  5^(1/4) * phi^(2*n + 2) / (8 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 08 2021
%F A166300 a(n) = Sum_{j=0..n}((j+1)*Sum_{i=0..n-j}((binomial(j+2*i+1,i)*Sum_{k=0..n-j-2*i}(binomial(k,n-k-j-2*i)*binomial(k+j+2*i,k)*(-1)^(n-k)))/(j+2*i+1))). - _Vladimir Kruchinin_, Mar 07 2016
%e A166300 a(5)=2 because we have UUUDDUUDDD and UUUUUDDDDD.
%e A166300 G.f. = 1 + x^3 + x^4 + 2*x^5 + 5*x^6 + 10*x^7 + 22*x^8 + 50*x^9 + 113*x^10 + ...
%p A166300 G := 2/(1+z+z^2+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 32);
%t A166300 CoefficientList[Series[2/(1+x+x^2+Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 12 2014 *)
%o A166300 (PARI) {a(n) = local(A); A = 1 + O(x); for( k=1, ceil(n / 5), A = 1 / (1 - x^3 / (1 - x / (1 - x * A)))); polcoeff( A, n)}; /* _Michael Somos_, May 12 2012 */
%o A166300 (PARI) x='x+O('x^40); Vec(2/(1+x+x^2+((1+x+x^2)*(1-3*x+x^2))^(1/2))) \\ _Altug Alkan_, Sep 23 2018
%o A166300 (Maxima)
%o A166300 a(n):=sum((j+1)*sum((binomial(j+2*i+1,i)*sum(binomial(k,n-k-j-2*i)*binomial(k+j+2*i,k)*(-1)^(n-k),k,0,n-j-2*i))/(j+2*i+1),i,0,n-j),j,0,n); /*  _Vladimir Kruchinin_, Mar 07 2016 */
%o A166300 (Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(2/(1+x+x^2+Sqrt((1+x+x^2)*(1-3*x+x^2))))); // _G. C. Greubel_, Sep 22 2018
%Y A166300 Cf. A166299, A180662, A188442, A188443, A188444.
%K A166300 nonn
%O A166300 0,6
%A A166300 _Emeric Deutsch_, Nov 07 2009