This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166304 #10 Mar 03 2024 15:43:54 %S A166304 4,5,16,11,28,17,40,23,52,29,64,35,76,41,88,47,100,53,112,59,124,65, %T A166304 136,71,148,77,160,83,172,89,184,95,196,101,208,107,220,113,232,119, %U A166304 244,125,256,131,268,137,280,143,292,149,304,155,316,161,328,167,340,173,352,179 %N A166304 Third trisection of A022998. %C A166304 The sequence read modulo 9 is the periodic sequence 4, 5, 7, 2, 1, 8 (repeat..) %C A166304 The same set of numbers in a period of length 6 is in A153130, %C A166304 A165355 read modulo 9, A165367 read modulo 9, and A166138 read modulo 9. %H A166304 G. C. Greubel, <a href="/A166304/b166304.txt">Table of n, a(n) for n = 0..10000</a> %H A166304 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 2, 0, -1). %F A166304 a(n) = A022998(3*n+2). %F A166304 a(n) = 2*a(n-2)-a(n-4). %F A166304 G.f.: (4+5*x+8*x^2+x^3)/((x-1)^2 *(1+x)^2 ). %F A166304 a(2*n) = A017569(n). a(2n+1) = A016969(n) . %t A166304 LinearRecurrence[{0, 2, 0, -1}, {4, 5, 16, 11}, 100] (* _G. C. Greubel_, May 09 2016 *) %Y A166304 Cf. A165988 (first trisection), A166138 (2nd trisection). %K A166304 nonn,easy %O A166304 0,1 %A A166304 _Paul Curtz_, Oct 11 2009 %E A166304 Edited and extended by _R. J. Mathar_, Oct 14 2009