This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166317 #25 Mar 28 2020 14:02:36 %S A166317 1,0,1,4,0,1,0,16,0,1,80,0,40,0,1,0,640,0,80,0,1,3904,0,2800,0,140,0, %T A166317 1,0,49152,0,8960,0,224,0,1,354560,0,319744,0,23520,0,336,0,1,0, %U A166317 6225920,0,1454080,0,53760,0,480,0,1,51733504,0,54897920,0,5230720,0,110880,0,660,0,1 %N A166317 Exponential Riordan array [sec(2x), arctanh(tan(x))]. %C A166317 The Bell transform of abs(2^n*euler_number(n)). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 18 2016 %e A166317 Triangle begins %e A166317 1; %e A166317 0, 1; %e A166317 4, 0, 1; %e A166317 0, 16, 0, 1; %e A166317 80, 0, 40, 0, 1; %e A166317 0, 640, 0, 80, 0, 1; %e A166317 3904, 0, 2800, 0, 140, 0, 1; %e A166317 0, 49152, 0, 8960, 0, 224, 0, 1; %e A166317 354560, 0, 319744, 0, 23520, 0, 336, 0, 1; %e A166317 0, 6225920, 0, 1454080, 0, 53760, 0, 480, 0, 1; %e A166317 51733504, 0, 54897920, 0, 5230720, 0, 110880, 0, 660, 0, 1; %e A166317 Production matrix is %e A166317 0, 1; %e A166317 4, 0, 1; %e A166317 0, 12, 0, 1; %e A166317 16, 0, 24, 0, 1; %e A166317 0, 80, 0, 40, 0, 1; %e A166317 64, 0, 240, 0, 60, 0, 1; %e A166317 0, 448, 0, 560, 0, 84, 0, 1; %e A166317 256, 0, 1792, 0, 1120, 0, 112, 0, 1; %e A166317 0, 2304, 0, 5376, 0, 2016, 0, 144, 0, 1; %e A166317 which is the exponential Riordan array [cosh(2x),x] minus its top row. (Cf. also A117435.) %t A166317 (* The function BellMatrix is defined in A264428. *) %t A166317 rows = 12; %t A166317 M = BellMatrix[Abs[2^#*EulerE[#]]&, rows]; %t A166317 Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jul 11 2019 *) %o A166317 (Sage) # uses[bell_matrix from A264428] %o A166317 # Adds a column 1,0,0,0, ... at the left side of the triangle. %o A166317 bell_matrix(lambda n: abs(2^n*euler_number(n)), 10) # _Peter Luschny_, Jan 18 2016 %Y A166317 Row sums are A012259(n+1). %Y A166317 Inverse is A166318 which is a signed version of this sequence. %Y A166317 Cf. A117435, A264428. %K A166317 easy,nonn,tabl %O A166317 0,4 %A A166317 _Paul Barry_, Oct 11 2009