This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166340 #11 Mar 11 2022 20:45:51 %S A166340 1,1,1,1,8,1,1,19,19,1,1,42,114,42,1,1,89,510,510,89,1,1,184,1975, %T A166340 4080,1975,184,1,1,375,7029,26195,26195,7029,375,1,1,758,23712,146954, %U A166340 261950,146954,23712,758,1,1,1525,77200,753800,2191474,2191474,753800,77200,1525,1 %N A166340 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+8*x+x^2)/(1-x)^4, read by rows. %D A166340 Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91 %H A166340 G. C. Greubel, <a href="/A166340/b166340.txt">Rows n = 1..50 of the triangle, flattened</a> %F A166340 T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+8*x+x^2)/(1-x)^4. %F A166340 From _G. C. Greubel_, Mar 11 2022: (Start) %F A166340 T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A004466(k), b(n, 0) = 1, and b(1, k) = 1. %F A166340 T(n, n-k) = T(n, k). (End) %e A166340 Triangle begins as: %e A166340 1; %e A166340 1, 1; %e A166340 1, 8, 1; %e A166340 1, 19, 19, 1; %e A166340 1, 42, 114, 42, 1; %e A166340 1, 89, 510, 510, 89, 1; %e A166340 1, 184, 1975, 4080, 1975, 184, 1; %e A166340 1, 375, 7029, 26195, 26195, 7029, 375, 1; %e A166340 1, 758, 23712, 146954, 261950, 146954, 23712, 758, 1; %e A166340 1, 1525, 77200, 753800, 2191474, 2191474, 753800, 77200, 1525, 1; %t A166340 (* First program *) %t A166340 p[x_, 1]:= x/(1-x)^2; %t A166340 p[x_, 2]:= x*(1+x)/(1-x)^3; %t A166340 p[x_, 3]:= x*(1+8*x+x^2)/(1-x)^4; %t A166340 p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x] %t A166340 Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten %t A166340 (* Second program *) %t A166340 b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]]; %t A166340 t[n_, k_, m_]:= t[n, k]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}]; %t A166340 T[n_, k_, m_]:= T[n, k, m]= If[k==1, 1, t[n-1, k, m] - t[n-1, k-1, m]]; %t A166340 Table[T[n, k, 2], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 11 2022 *) %o A166340 (Sage) %o A166340 def b(n,k,m): %o A166340 if (n<2): return 1 %o A166340 elif (k==0): return 0 %o A166340 else: return k^(n-1)*((m+3)*k^2 - m)/3 %o A166340 @CachedFunction %o A166340 def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) ) %o A166340 def A166340(n,k): return 1 if (k==1) else t(n-1,k,2) - t(n-1,k-1,2) %o A166340 flatten([[A166340(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 11 2022 %Y A166340 Cf. A166341, A166343, A166344, A166345, A166346, A166349. %Y A166340 Cf. A004466, A123125. %K A166340 nonn,tabl %O A166340 1,5 %A A166340 _Roger L. Bagula_, Oct 12 2009 %E A166340 Edited by _G. C. Greubel_, Mar 11 2022