This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A166341 #7 Mar 11 2022 20:45:19 %S A166341 1,1,1,1,10,1,1,23,23,1,1,50,138,50,1,1,105,614,614,105,1,1,216,2367, %T A166341 4912,2367,216,1,1,439,8397,31483,31483,8397,439,1,1,886,28264,176314, %U A166341 314830,176314,28264,886,1,1,1781,91880,903104,2632034,2632034,903104,91880,1781,1 %N A166341 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+10*x+x^2)/(1-x)^4, read by rows. %D A166341 Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91 %H A166341 G. C. Greubel, <a href="/A166341/b166341.txt">Rows n = 1..50 of the triangle, flattened</a> %F A166341 T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+10*x+x^2)/(1-x)^4. %F A166341 From _G. C. Greubel_, Mar 11 2022: (Start) %F A166341 T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A007588(k), b(n, 0) = 1, and b(1, k) = 1. %F A166341 T(n, n-k) = T(n, k). (End) %e A166341 Triangle begins as: %e A166341 1; %e A166341 1, 1; %e A166341 1, 10, 1; %e A166341 1, 23, 23, 1; %e A166341 1, 50, 138, 50, 1; %e A166341 1, 105, 614, 614, 105, 1; %e A166341 1, 216, 2367, 4912, 2367, 216, 1; %e A166341 1, 439, 8397, 31483, 31483, 8397, 439, 1; %e A166341 1, 886, 28264, 176314, 314830, 176314, 28264, 886, 1; %e A166341 1, 1781, 91880, 903104, 2632034, 2632034, 903104, 91880, 1781, 1; %t A166341 (* First program *) %t A166341 p[x_, 1]:= x/(1-x)^2; %t A166341 p[x_, 2]:= x*(1+x)/(1-x)^3; %t A166341 p[x_, 3]:= x*(1+10*x+x^2)/(1-x)^4; %t A166341 p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x] %t A166341 Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten %t A166341 (* Second program *) %t A166341 b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]]; %t A166341 t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}]; %t A166341 T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]]; %t A166341 Table[T[n,k,3], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 11 2022 *) %o A166341 (Sage) %o A166341 def b(n,k,m): %o A166341 if (n<2): return 1 %o A166341 elif (k==0): return 0 %o A166341 else: return k^(n-1)*((m+3)*k^2 - m)/3 %o A166341 @CachedFunction %o A166341 def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) ) %o A166341 def A166341(n,k): return 1 if (k==1) else t(n-1,k,3) - t(n-1,k-1,3) %o A166341 flatten([[A166341(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 11 2022 %Y A166341 Cf. A166340, A166343, A166344, A166345, A166346, A166349. %Y A166341 Cf. A007588, A123125. %K A166341 nonn,tabl %O A166341 1,5 %A A166341 _Roger L. Bagula_, Oct 12 2009 %E A166341 Edited by _G. C. Greubel_, Mar 11 2022